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Abstract. Quantitative and qualitative fuzzy information measures have been proposed to solve

multi-attribute decision making (MADM) problems with interval–valued hesitant fuzzy informa-

tion from different points. We analyse the existing fuzzy information measures of the interval-valued

hesitant fuzzy sets (IVHFSs) in detail and classify them into two categories. One is based on the

closeness of the data, such as the distance, and the other is based on the linear relationship or vari-

ation tendency, such as the correlation coefficient. These two kinds of information measures are

actually partial measures which pay attention to only one factor of the data. Therefore, we construct

a novel synthetic grey relational degree by considering both the closeness and the variation tendency

factors of the data to improve the existing information measures and enhance the grey relational anal-

ysis (GRA) theory for IVHFSs. However, the notion of the synthetic grey relational degree is not

only restricted to the IVHFSs but can be extended to other sets. Furthermore, we employ two practi-

cal MADM examples about emergency management evaluation and pattern recognition to validate

and compare the proposed synthetic grey relational degree with other information measures, which

demonstrate its superiorities in discrimination and accuracy.

Key words: multi-attribute decision making (MADM), interval-valued hesitant fuzzy sets

(IVHFSs), synthetic grey relational degree, information measures.

1. Introduction

Multi-attribute decision making (MADM) is pervasive around us and as the aggregating

information tends to be uncertain and vague, the fuzzy MADM is more and more popular

(Yu, 2017; Rostamzadeh et al., 2017). Due to the superiority in expressing the imprecise

and vague information, the hesitant fuzzy sets (HFSs) are regarded as one of the most

efficient tool to deal with fuzzy MADM problems (Mu et al., 2015). Torra (2010) orig-

inally introduced the hesitant fuzzy set (HFS), and Chen et al. (2013a, 2013b) extended

the HFS to interval-valued hesitant fuzzy set (IVHFS) by using the interval to represent

the membership. Since the IVHFS is more general than the HFS, we devote ourselves to

this set and intend to investigate the information measures of it to solve MADM problems

in this paper.

*Corresponding authors.
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Chen et al. (2013a, 2013b) first introduced interval-valued hesitant fuzzy preference

relations to describe uncertain evaluation information in group decision making (GDM)

processes. They also presented some aggregation operators and defined the correlation co-

efficients for IVHFSs. Chen and Xu (2014) further investigated the properties, operational

laws and relationships of fundamental operations on IVHFS. Recently, Verma (2017) also

proposed four new operations on IVHFS and studied their properties and relations in de-

tails. Besides, Yang et al. (2017) proposed a new comparative law based on the possibility

degree to compare interval-valued hesitant fuzzy elements (IVHFEs). Following Chen

et al.’s work, many researchers contributed to the IVHFS and applied it to various deci-

sion making problems. To our knowledge of the existing analyses of IVHFS in decision

making, we summarize them to three categories. The first is based on the informationmea-

sures (Chen et al., 2013a; Wei et al., 2014a, 2014b; Farhadinia, 2013; Jin et al., 2016b;

Meng et al., 2016; Peng et al., 2017; Liu et al., 2018), the second is based on the aggrega-

tion operators (Wei et al., 2013; Zhang et al., 2014; Meng and Chen, 2014; He et al., 2016;

Jin et al., 2016a) and the third is based on the preference, outranking or consensus rela-

tional models (Gitinavard et al., 2017; Zhang, 2016; Asan et al., 2018). Among which,

the information measures take important occupations in the MADM. Some primary and

classical decision making methods as EDAS (Evaluation based on Distance from Aver-

age Solution), TODIM (an acronym in Portuguese for Interactive Multi-Criteria Deci-

sion Making), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution),

VIKOR (Visekriterijumska Optimizacija I Kompromisno Resenje) and MOORA (Multi-

Objective Optimization by Ratio Analysis) are all established on the basis of information

measures. Therefore, in this paper, we mainly focus on this point and aim at improving

the existing information measures for IVHFS. To date, such information measures as dis-

tance, similarity, entropy, cross-entropy and correlation coefficients for IVHFS have been

proposed and applied in various MADM fields. Wei et al. (2014a, 2014b) proposed a vari-

ety of distance, similarity and correlation coefficients for IVHFSs. Farhadinia (2013) dis-

cussed the distance, similarity and entropy measure for IVHFSs and the transformation

techniques between each other. Besides, Farhadinia (2015) also introduced the division

and subtraction formulas for IVHFSs. Jin et al. (2016b) defined the entropy, similarity

measures and cross-entropy for IVHFSs based on continuous ordered weighted averag-

ing operator. Meng et al. (2016) defined several new correlation coefficients which do not

need to consider the lengths of IVHFEs and the arrangement of their possible interval val-

ues. Peng et al. (2017) exploited some (weighted) distance measures for IVHFSs based

on the COWA operator and used relative ratio to make the decision. Liu et al. (2018) de-

veloped the distance and similarity measures for IVHFSs and transferred distance to sim-

ilarity by set-theoretic approach. Gitinavard et al. (2016) introduced a novel multi-criteria

weighting and ranking model for IVHFS and applied it to location and supplier selec-

tion problems. Zhang and Xu (2014) extended the TODIM to the IVHFS domain based

on the defined measured functions and compared it with the TOPSIS (Zhang and Xu,

2013) to make the decision. Further, Fernández et al. (2015) introduced finite interval-

valued hesitant fuzzy sets, defined a new order, entropy between them considering the

fuzziness, lack of knowledge and hesitance and applied it in the business selection. Al-
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though numerous information measures have been defined for IVHFSs, in a further analy-

sis of these measures, we classify them into two types. One is based on the closeness and

the other is based on the linear relations or the variation tendency of IVHFSs. Because

the distance, similarity and entropy can be transferred to each other (Farhadinia, 2013;

Jin et al., 2016b), they are all equivalent in a sense and based on the closeness. Instead,

correlation coefficient is based on the linear relations or the variation tendency. There-

fore, we claim that these existing information measures are all one side of a coin in the

real measures. They are not the real and actual measures between data.

As mentioned above, the existing information measures pay attention to either the

closeness or the variation tendency of IVHFSs. None of them includes both sides. For

this reason, the motivation of this paper is to develop a novel information measure of

IVHFSs which considers both the closeness and the variation tendency factors to improve

the existing ones. We attempt to explore this information measure by the grey relational

analysis (GRA) of the IVHFSs. Comparing with other information measures, the GRA

of the IVHFSs is relatively week. Therefore, another purpose of this paper is to enhance

the GRA in the IVHFSs field. Actually, the traditional GRA of the fuzzy sets takes an

important occupation in the fuzzy measure fields. It can measure the closeness of two

fuzzy sets just like the distance, similarity and entropy measures. Many researchers fo-

cused on the GRA of fuzzy sets and proposed several approaches to solve decision mak-

ing problems. Turskis and Zavadskas (2010) used the additive ratio assessment method

with grey numbers to multiple criteria analysis. Wei (2011a, 2011b, 2011c) established

a series of GRA methods to investigate the multiple attribute decision-making problems

with intuitionistic fuzzy information, 2-tuple linguistic information and the dynamic hy-

brid multiple attribute decision information. Kong et al. (2011) presented a new algorithm

based on GRA to discuss fuzzy soft set decision problems. Kuo and Liang (2011) com-

bined the concepts of VIKOR and GRA to present an effective fuzzy MCDM method.

Zhang et al. (2011, 2013) and Guo (2013) also developed the GRA method for solving

MCDM problems with interval-valued triangular fuzzy numbers, intuitionistic trapezoidal

fuzzy number and hybrid multiple attribute information respectively. Tang (2015) and Li

et al. (2015) proposed a novel fuzzy soft set approach in decision making based on GRA

and Dempster-Shafer theory of evidence respectively. Liou et al. (2016) combined the

DEMATEL (DEcision-MAking Trial and Evaluation Laboratory), ANP (Analytical Net-

work Process) and COPRAS-G (COmplex Proportional ASsessment of alternatives with

Grey relations) techniques together to make the decision with interval grey numbers. As

to the HFSs domain, Li and Wei (2014) established an optimization model based on GRA

to get the weight vector of the HFSs criteria. Zang et al. (2017) proposed a grey rela-

tional projection method based on the distance measure between the interval-valued dual

hesitant fuzzy elements. Although there are so many GRA methods for various types of

fuzzy sets, none of them is special for IVHFSs. Furthermore, the existing GRA in the

HFSs domain can not be directly transferred for IVHFSs. Even if they can be transferred

through some techniques, the transferred GRA for IVHFSs from the existing methods is

also one side of a coin just like the aforementioned distance, similarity and entropy mea-

sures. That is to say, the existing GRA methods for fuzzy sets only pay attention to the
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closeness between the fuzzy sets and neglect their variation tendency and relations. Ob-

viously, these kinds of information measures are unreasonable. They can reflect only one

aspect of the real measures. Sun et al. (2018) and Guan et al. (2018) presented a syn-

thetic grey relational degree considering both sides by defining the slope grey relational

degree, however, the slope grey relational degree can not be used for IVHFSs directly.

Furthermore, the combination of synthetic grey relational degree is simple and can not

reflect the influence of the whole index space of the grey theory. Nevertheless, what luck

is that we can draw lessons from Sun et al.’s notions and construct a novel synthetic grey

relational degree as information measure for IVHFSs which takes both the closeness and

the variation tendency factors into account. Consequently, in this paper, we commit our-

selves to construct a novel synthetic grey relational degree for IVHFSs which can achieve

the aforementioned two goals: (1) develop a novel information measure of IVHFSs which

considers both the closeness and the variation tendency factors; (2) enhance the GRA in

the IVHFSs field.

As debated above, the main contribution of this paper is the novel synthetic grey rela-

tional degree for IVHFSs. It consists of two aspects: the grey relational degree accounting

for the closeness and the variation tendency. As to the grey relational degree describing

the closeness, we can extend the traditional grey relational degree from HFSs to IVHFSs.

We call it the closeness grey relational degree in this paper. And for the grey relational de-

gree expressing the variation tendency, we do not transfer the slope grey relational degree

of HFSs in Sun et al. (2018) to IVHFSs. Instead, we define a novel variation rate grey re-

lational degree. We use the variation rate of the mean value of the interval membership to

represent the variation tendency. We define two different variation rates of the mean value

and use them to construct the variation rate grey relational degree. Based on the closeness

and the variation rate grey relational degree, we further develop the novel synthetic grey

relational degree which can reflect the influence of the whole index space better than (Sun

et al., 2018).

The rest of the paper is as follows: Section 2 briefly reviews the concepts of IVHFSs

and GRA theory. In Section 3, we extend the traditional grey relational degree from HFSs

to IVHFSs and define the closeness grey relational degree for IVHFSs. We also propose

the novel variation rate grey relational degree for IVHFSs in this section. Furthermore, we

construct the synthetic grey relational degree with the help of the former two. In Section 4,

we use the synthetic grey relational degree in MADM based on TOPSIS. In Section 5,

a practical MADM problem is used to validate the synthetic grey relational degree. We

also compare it with the similarity and correlation coefficient througha pattern recognition

example. Finally, the paper ends with some concluding remarks and future challenges in

Section 6.

2. Preliminaries

In this section, we recall the IVHFSs and the GRA theory.
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2.1. Interval-Valued Hesitant Fuzzy Sets

In many real problems, due to insufficiency in available information, it may quantify the

attribute with an interval number within [0,1] instead of a crisp number. Thus, Chen et

al. (2013a, 2013b) introduced the concept of IVHFSs, which permits the membership

degrees of an element to a given set to have a few different interval values.

Definition 1. Suppose that X = {x1, x2, . . . , xn} is a reference set, an IVHFS Ã on X is

defined as

Ã =
{〈

x, h̃
Ã
(x)

〉∣

∣x ∈ X
}

(1)

where h̃Ã(x) is a set of some different values in [0,1], denotes all possible interval-valued

membership degrees of the element and represents the possible membership degrees of the

element x ∈ X to the set Ã. For convenience, they call h̃
Ã
(x) an interval-valued hesitant

fuzzy element (IVHFE), which is a basic unit of IVHFS.

h̃Ã(x) =
{

γ̃
∣

∣γ̃ ∈ h̃Ã(x)
}

(2)

where γ̃ is an interval number, γ̃ = [γ̃ L, γ̃ U ], γ̃ L and γ̃ U represent the lower and upper

limits of γ̃ , respectively.

2.2. GRA Theory

GRA theory was originally introduced by Deng (1989). It has been widely applied in some

uncertain problems as decision making, pattern recognition and alike, particularly under

the discrete data and fuzzy information.

Definition 2. For reference set X0 = (x0(j), j = 1,2, . . . , k) and Xi = (xi(j), j =

1,2, . . . , k), the grey relational coefficient is defined by

r
(

x0(j), xi(j)
)

=
mini minj |x0(j) − xi(j)| + ρ · maxi maxj |x0(j) − xi(j)|

|x0(j) − xi(j)| + ρ · maxi maxj |x0(j) − xi(j)|
(3)

where ρ ∈ [0,1], represents the resolution coefficient which is given by the decision mak-

ers, generally we let ρ = 0.5.

The grey relational degree is defined as:

γ (X0,Xi) =
1

k
·

k
∑

j=1

r
(

x0(j), xi(j)
)

(4)
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If we take the weight into consideration and let the weight vector of Xi be w =

(w1,w2, . . . ,wk)
T ,

∑k
j=1

wj = 1, j = 1,2, . . . , k, then the grey relational degree is ex-

tended to the weighted grey relational degree:

γ (X0,Xi) =

k
∑

j=1

wj · r
(

x0(j), xi(j)
)

. (5)

3. GRA for IVHFSs

In this section, we firstly extend the traditional grey relational degree to the IVHFSs do-

main and form a closeness grey relational degree for IVHFSs. Subsequently, we propose

the variation rate grey relational degree and further construct the synthetic grey relational

degree.

3.1. Closeness Grey Relational Degree for IVHFSs

Definition 3. For two IVHFSs on the fixed set X = {x1, x2, . . . , xn}, Ã = {〈x, h̃Ã(xi)〉|xi ∈

X, i = 1,2, . . . , n} and B̃j = {〈xi, h̃B̃j
(xi)〉|xi ∈ X, i = 1,2, . . . , n, j = 1,2, . . . ,m}

with h̃Ã(xi) = {γ̃Ãi1, γ̃Ãi2, . . . , γ̃Ãil
Ãi

}, h̃B̃j
(xi) = {γ̃B̃j i1, γ̃B̃j i2

, . . . , γ̃B̃j il
B̃j i

}, i = 1,2, . . . , n,

j = 1,2, . . . ,m, then we extend the traditional grey relational coefficient to be the tradi-

tional grey relational coefficient between IVHFEs h̃Ã(xi) and h̃B̃j
(xi) as:

r
(

h̃Ã(xi), h̃B̃j
(xi)

)

=
minj mini{d(h̃Ã(xi), h̃B̃j

(xi))} + ρ · maxj maxi{d(h̃Ã(xi), h̃B̃j
(xi))}

d(h̃Ã(xi), h̃B̃j
(xi)) + ρ · maxj maxi{d(h̃Ã(xi), h̃B̃j

(xi))}
(6)

where d(h̃Ã(xi), h̃B̃j
(xi)) is the distance between IVHFEs h̃Ã(xi) and h̃B̃j

(xi), which can

be calculated according to:

dhne

(

h̃
Ã
(xi), h̃B̃j

(xi)
)

=

[(

1

2lAi

lAi
∑

k=1

(∣

∣γ̃ L

Ãik
− γ̃ L

B̃j ik

∣

∣

p
+

∣

∣γ̃ U

Ãik
− γ̃ U

B̃j ik

∣

∣

p)

)]1/p

. (7)

For more distance between IVHFEs, please refer to Wei et al. (2014a, 2014b), Farhadinia

(2013), Jin et al. (2016b), Peng et al. (2017), Liu et al. (2018). The traditional grey rela-

tional coefficient between IVHFEs describes the closeness of the IVHFSs data, so we also

call it the closeness grey relational coefficient in this paper.

Remark 1. In this paper, we assume the number of the membership in each IVHFE to be

compared with is equal. For the moment, we do not discuss the unequal case. Actually, if

the number of the membership in each IVHFE is different, we have to extend the shorter
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one until both of them have the same length when we compare them. We can extend them

according to the optimistic or the pessimistic methods and some other rules.

Based on the closeness grey relational coefficient between IVHFEs, the closeness grey

relational degree between IVHFSs Ã and B̃j is defined as:

γ (Ã, B̃j ) =
1

n
·

n
∑

i=1

r
(

h̃Ã(xi), h̃B̃j
(xi)

)

. (8)

If we take the weight into consideration and let the weight vector of X be w =

(w1,w2, . . . ,wn)
T ,

∑n
i=1

wi = 1, i = 1,2, . . . , n, then we extend the IVHFSs closeness

grey relational degree to the weighted IVHFSs closeness grey relational degree as:

γw(Ã, B̃j ) =

n
∑

i=1

wi · r
(

h̃Ã(xi), h̃B̃j
(xi)

)

. (9)

3.2. Variation Rate Grey Relational Degree for IVHFSs

In this section, we define the variation rate grey relational degree which can represent the

variation tendency of IVHFSs. We use the variation rate of the mean value in the interval

membership to represent this variation tendency. We define two different variation rates

of the mean value and use them to construct the variation rate grey relational degrees.

For IVHFE h̃(x) = {γ̃1, γ̃2, . . . , γ̃k, . . . , γ̃l} with interval membership γ̃k = [γ̃ L
k , γ̃ U

k ],

k = 1,2, . . . , l, the mean value of the interval membership in IVHFE can be represented

by

m
(

h̃(x)
)

=

{

m(γ̃1),m(γ̃2), . . . ,m(γ̃k), . . . ,m(γ̃l)
∣

∣m(γ̃k) =
γ̃ L
k + γ̃ U

k

2
, k = 1,2, . . . , l

}

.

(10)

With the help of the mean value sequence, we define two different variation rates of

the mean value to represent the variation tendency of IVHFSs: the global variation rate

and the local variation rate.

The global variation rate of the mean value is described as:

h̃′
glo(x) =

{

m
′

glo(γ̃k), k = 1,2, . . . , l − 1
}

(11)

where

m′
glo(γ̃k) =

m(γ̃k+1) − m(γ̃k)

m̄(γ̃k)
, k = 1,2, . . . , l − 1 (12)
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where m̄(γ̃k) is the mean of mean value of the interval membership.

m̄(γ̃k) =

l
∑

k=1

m(γ̃k). (13)

The local variation rate of the mean value is described as:

h̃′
lo(x) =

{

m′
lo(γ̃k), k = 1,2, . . . , l − 1

}

(14)

where

m′
lo(γ̃k) =

m(γ̃k+1) − m(γ̃k)

m(γ̃k)
, k = 1,2, . . . , l − 1. (15)

With the help of these two different variation rates, we defined the variation rate grey

relational degree as follows.

Definition 4. For two IVHFSs on the fixed set X = {x1, x2, . . . , xn}, Ã = {〈x, h̃Ã(xi)〉|xi ∈

X, i = 1,2, . . . , n} and B̃j = {〈xi, h̃B̃j
(xi)〉|xi ∈ X, i = 1,2, . . . , n, j = 1,2, . . . ,m}

with h̃Ã(xi) = {γ̃Ãi1, γ̃Ãi2, . . . , γ̃Ãil
Ãi

}, h̃B̃j
(xi) = {γ̃B̃j i1, γ̃B̃j i2

, . . . , γ̃B̃j il
B̃j i

}, i = 1,2, . . . , n,

j = 1,2, . . . ,m, the variation rate grey relational coefficient between the IVHFEs h̃Ã(xi)

and h̃Bj (xi) is defined as:

rv
(

h̃Ã(xi), h̃Bj (xi)
)

=
1

lAi − 1

lAi−1
∑

k=1

εv

[

h̃
′

Ã
(xi), h̃

′

B̃j
(xi)

]

k
(16)

where lAi is the number of membership in h̃Ã(xi),

εv

[

h̃′

Ã
(xi), h̃

′

B̃j
(xi)

]

k

=
1 + |m′(γ̃Ãik)|

1 + |m′(γ̃Ãik)| + |m′(γ̃Ãik) − m′(γ̃B̃j ik)|
, k = 1,2, . . . , lAi − 1 (17)

where m′(γ̃Ãik) and m′(γ̃B̃j ik) are the variation rate of IVHFSs, which can be obtained in

two ways: the global variation rate (12) and the local variation rate (15).

Based on the variation rate grey relational coefficient between the IVHFEs, the varia-

tion rate grey relational degree between the IVHFSs Ã and B̃j is defined as:

γv(Ã, B̃j ) =
1

n
·

n
∑

i=1

rv
(

h̃Ã(xi), h̃B̃j
(xi)

)

. (18)

If we take the weight into consideration and let the weight vector of X be w =

(w1,w2, . . . ,wn)
T ,

∑n
i=1

wi = 1, i = 1,2, . . . , n, then we extend the variation rate grey
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relational degree between the IVHFSs to the weighted IVHFSs variation rate grey rela-

tional degree as:

γvw(Ã, B̃j ) =

n
∑

i=1

wi · rv
(

h̃Ã(xi), h̃B̃j
(xi)

)

. (19)

3.3. Synthetic Grey Relational Degree for IVHFSs

Based on the closeness and the variation rate grey relational degree, we further construct

the novel synthetic grey relational degree which takes into considerationboth the closeness

and the variation tendency factors.

Definition 5. For two IVHFSs on the fixed set X = {x1, x2, . . . , xn}, Ã = {〈x, h̃Ã(xi)〉|xi ∈

X, i = 1,2, . . . , n} and B̃j = {〈xi , h̃B̃j
(xi)〉|xi ∈ X, i = 1,2, . . . , n, j = 1,2, . . . ,m}

with h̃Ã(xi) = {γ̃Ãi1, γ̃Ãi2, . . . , γ̃Ãil
Ãi

}, h̃B̃j
(xi) = {γ̃B̃j i1

, γ̃B̃j i2
, . . . , γ̃B̃j il

B̃j i
}, i = 1,2, . . . , n,

j = 1,2, . . . ,m, the synthetic grey relational coefficient between the IVHFEs h̃Ã(xi) and

h̃B̃j
(xi) is defined as:

rs
(

h̃Ã(xi), h̃B̃j
(xi)

)

=
1 + ξ · maxj maxi {d(h̃

Ã
(xi ), h̃B̃j

(xi ))} + ζ · maxj maxi {d(h̃′

Ã
(xi ), h̃

′

B̃j
(xi ))}

1 + λ1 · d(h̃
Ã
(xi ), h̃B̃j

(xi )) + λ2 · d(h̃′

Ã
(xi ), h̃

′

B̃j
(xi )) + ξ · maxj maxi {d(h̃

Ã
(xi ), h̃B̃j

(xi ))} + ζ · maxj maxi {d(h̃′

Ã
(xi ), h̃

′

B̃j
(xi ))}

(20)

where λ1, λ2 > 0, which indicate the importance of the closeness and the variation rate

of the IVHFSs, respectively, λ1 + λ2 = 1. ξ and ζ denote the resolution coefficient of

the closeness and the variation rate, ξ, ζ ∈ [0,1]. h̃′

Ã
(xi) and h̃′

B̃j
(xi) are the variation

rates of the mean value in the interval membership, which can be gotten in two ways:

equations (11) and equations (14). d(h̃Ã(xi), h̃B̃j
(xi)) is the distance between IVHFEs

h̃Ã(xi) and h̃B̃j
(xi) and d(h̃′

Ã
(xi), h̃

′

B̃j
(xi)) is the distance between the variation rate of

IVHFEs h̃′

Ã
(xi) and h̃′

B̃j
(xi). d(h̃Ã(xi), h̃B̃j

(xi)) can be calculated by equations (7) and

d(h̃Ã(xi), h̃B̃j
(xi)) can be calculated by:

d
(

h̃Ã(xi), h̃B̃j
(xi)

)

=

[(

1

lAi − 1

lAi−1
∑

k=1

∣

∣m′(γ̃Ãik) − m′(γ̃B̃j ik
)
∣

∣

p

)]1/p

. (21)

Based on IVHFEs synthetic grey relational coefficient, the IVHFSs synthetic grey re-

lational degree is defined as:

γs(Ã, B̃j ) =
1

n
·

n
∑

i=1

rs
(

h̃Ã(xi), h̃B̃j
(xi)

)

. (22)
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Fig. 1. The process of the construction of the IVHFSs grey relational degree.

If we take the weight into consideration and let the weight vector of X be w =

(w1,w2, . . . ,wn)
T ,

∑n
i=1

wi = 1, i = 1,2, . . . , n, then we extend the IVHFSs synthetic

grey relational degree to the weighted IVHFSs synthetic grey relational degree as:

γsw(Ã, B̃j ) =

n
∑

i=1

wi · rs
(

h̃Ã(xi), h̃B̃j
(xi)

)

. (23)

Actually, we can use either the global variation rate of the mean value or the local

variation rate of the mean value in constructing the synthetic grey relational degree, which

are called global synthetic grey relational degree and local synthetic grey relational degree,

respectively.

The IVHFSs synthetic grey relational degree takes the considerations of both the close-

ness and the variation tendency factors of IVHFSs together, which can better distinguish

two IVHFSs than the existing fuzzy information measures.

The process of the constructionof the IVHFSs grey relational degree is shown in Fig. 1.

4. The MADM Methodology with IVHFSs Information Based on the Grey

Relational Degree

In this section, we investigate the MADM problems with IVHFSs information based on

the synthetic grey relational degree and the TOPSIS method.

Suppose an interval-valued hesitant fuzzy MADM problem, that there are m alterna-

tives Ãi (i = 1,2, . . . ,m) to be evaluated, each alternative has n interval-valued hesitant
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fuzzy attributes Cj (j = 1,2, . . . , n), denote h
Ãi

(Cj ) = {γ
Ãi1

, γ
Ãi2

, . . . , γ
Ãik

, . . . , γ
Ãi lij

}

represent the interval-valued hesitant fuzzy information of the alternatives Ai on

the attribute Cj , lij is the number of the membership values in hÃi
(Cj ), let w =

(w1,w2, . . . ,wj , . . . ,wn)
T be the relative weight vector of the attribute, satisfying the

normalization conditions: 0 6 wj 6 1 and
∑n

j=1
wj = 1. Then all the interval-valued

hesitant fuzzy information can be concisely expressed in matrix format as:

Ã =















hÃ1
(C1) hÃ1

(C2) · · · hÃ1
(Cn)

hÃ2
(C1)

. . . · · · hÃ2
(Cn)

...
... hÃi

(Cj )
...

hÃm
(C1) hÃm

(C2) · · · hÃm
(Cn)















m×n

. (24)

According to the process of TOPSIS, we express the steps of MADM with IVHFSs

information based on the synthetic grey relational degree as follows:

Step 1: Determine the positive ideal solution (PIS) and the negative ideal solution (NIS)

of each attribute in the normalized interval-valued hesitant fuzzy decision matrix to form

the positive and the negative IVHFSs:

Ã+ =
{〈

Cj , h
+

Ã
(Cj )

〉∣

∣Cj ∈ C, j = 1,2, . . . , n
}

, (25)

Ã− =
{〈

Cj , h
−

Ã
(Cj )

〉∣

∣Cj ∈ C, j = 1,2, . . . , n} (26)

where h+

Ã
(Cj ) and h−

Ã
(Cj ) are the positive and the negative IVHFEs:

h+

Ã
(Cj ) =

{

γ̃ +
1

, γ̃ +
2

, . . . , γ̃ +
k , . . . , γ̃ +

l+j

}

, (27)

h−

Ã
(Cj ) =

{

γ̃ −
1

, γ̃ −
2

, . . . , γ̃ −
k , . . . , γ̃ −

l−j

}

(28)

where

γ +
k =

(

max
16i6m

{γÃik
} if γÃik

∈ �b, min
16i6m

{γÃik
} if γAik ∈ �c

)

, (29)

γ −
k =

(

min
16i6m

{γAik} if γAik ∈ �b, max
16i6m

{γAik} if γAik ∈ �c

)

(30)

where �b and �c are related to benefit attribute and cost attribute, l+j and l−j are the

number of the membership values in the positive and the negative IVHFEs, respectively,

l+j = l−j . We can use the comparative law in Chen and Xu (2014) to calculate the maximum

and the minimum value in equations (29) and (30).

Step 2: Calculate the IVHFSs positive and negative synthetic grey relational degrees be-

tween each alternative and the PIS and the NIS according to the process of the construction
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of the IVHFSs synthetic grey relational degree.

γ +
sw

(

Ãi, Ã
+
)

=

n
∑

j=1

wj · rs
(

hÃi
(Cj ), h

+

Ã
(Cj )

)

, (31)

γ −
sw

(

Ãi, Ã
−
)

=

n
∑

j=1

wj · rs
(

hÃi
(Cj ), h

−

Ã
(Cj )

)

. (32)

Step 3: Construct the relative closeness of the alternative Ãi (i = 1,2, . . . ,m) with respect

to the ideal solution based on the calculated positive and negative IVHFSs synthetic grey

relational degrees which is defined as:

ηsi =
γ +
sw(Ãi, Ã

+)

γ +
sw(Ãi, Ã+) + γ −

sw(Ãi, Ã−)
, i = 1,2, . . . ,m. (33)

Step 4: Rank the alternatives according to the decreasing order of their relative closeness.

That is, the best alternative is the one with the greatest relative closeness to the ideal

solution.

5. MADM Applications

In this section, we employ the proposed grey relational degree to deal with MADM prob-

lems with IVHFSs information. We use example 1 about emergency management evalua-

tion to validate the proposed grey relational degree and example 2 about pattern recogni-

tion to compare the proposed grey relational degree with other information measures. We

also make a sensitive analysis of some parameters in the synthetic grey relational degree

in this section.

5.1. Apply the Proposed Grey Relational Degree to Emergency Management Evaluation

Example

In this subsection, an MADM example about emergency management evaluation prob-

lems with interval-valued hesitant fuzzy information is used to validate the proposed grey

relational degree. The interval-valued hesitant fuzzy data are extracted from Jin et al.

(2016b).

Example 1. Suppose that there are four alternatives Ai (i = 1,2,3,4) to be evaluated

by evaluators, each alternative has these six attributes Ci (i = 1,2, . . . ,6). To determine

the attribute weight is not the key point in this paper, so to simplify we let the weight be

w = (0.1074,0.1205,0.2101,0.1428,0.2474,0.1718)T , which is the same in Jin et al.

(2016b).The evaluated values are expressed by interval-valuedhesitant fuzzy information,

which is shown in Table 1.
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Table 1

The interval-valued hesitant fuzzy attributes’ information.

Attribute Alternatives

A1 A2 A3 A4

Attribute 1 {[0.7,0.9], [0.7,0.8], [0.6,0.8]} {[0.5,0.7], [0.5,0.6], [0.4,0.6]} {[0.3,0.5], [0.2,0.4], [0.2,0.3]} {[0.6,0.7], [0.5,0.7], [0.5,0.6]}

Attribute 2 {[0.4,0.5], [0.2,0.3], [0.1,0.3]} {[0.5,0.7], [0.5,0.5], [0.4,0.5]} {[0.8,0.9], [0.7,0.8], [0.6,0.8]} {[0.4,0.6], [0.3,0.6], [0.3,0.4]}

Attribute 3 {[0.2,0.4], [0.2,0.3], [0.1,0.3]} {[0.8,1.0], [0.7,0.9], [0.6,0.8]} {[0.3,0.4], [0.2,0.4], [0.1,0.4]} {[0.3,0.5], [0.2,0.4], [0.2,0.3]}

Attribute 4 {[0.5,0.8], [0.4,0.7], [0.4,0.6]} {[0.9,1.0], [0.7,0.9], [0.6,0.8]} {[0.2,0.3], [0.1,0.3], [0.1,0.2]} {[0.3,0.5], [0.3,0.4], [0.2,0.4]}

Attribute 5 {[0.2,0.5], [0.2,0.4], [0.1,0.4]} {[0.8,0.9], [0.7,0.9], [0.7,0.8]} {[0.1,0.3], [0.0,0.2], [0.0,0.1]} {[0.1,0.2], [0.0,0.2], [0.0,0.1]}

Attribute 6 {[0.8,0.9], [0.7,0.8], [0.7,0.7]} {[0.9,1.0], [0.8,1.0], [0.8,0.9]} {[0.6,0.8], [0.6,0.7], [0.5,0.5]} {[0.6,0.7], [0.4,0.6], [0.4,0.5]}

We utilize the proposed grey relational degree to evaluate the alternatives with IVHFSs

information in the following steps:

Step 1: All the attributes are of benefit type, we select each maximum IVHFE in the five

alternatives IVHFSs on the four attributes to construct the interval-valued hesitant fuzzy

PIS A+ and each minimum IVHFE to construct the interval-valued hesitant fuzzy NIS

A−. The PIS and the NIS are described as follows:

A+ =
[{

[0.7,0.9], [0.7,0.8], [0.6,0.8]
}

,
{

[0.8,0.9], [0.7,0.8], [0.6,0.8]
}

,
{

[0.8,1.0], [0.7,0.9], [0.6,0.8]
}

,
{

[0.9,1.0], [0.7,0.9], [0.6,0.8]
}

,
{

[0.8,0.9], [0.7,0.9], [0.7,0.8]
}

,
{

[0.9,1.0], [0.8,1.0], [0.8,0.9]
}]

,

A− =
[{

[0.3,0.5], [0.2,0.4], [0.2,0.3]
}

,
{

[0.4,0.5], [0.2,0.3], [0.1,0.3]
}

,
{

[0.2,0.4], [0.2,0.3], [0.1,0.3]
}

,
{

[0.2,0.3], [0.1,0.3], [0.1,0.2]
}

,
{

[0.1,0.2], [0.0,0.2], [0.0,0.1]
}

,
{

[0.6,0.7], [0.4,0.6], [0.4,0.5]
}]

.

Step 2: Calculate the IVHFSs positive and negative grey relational degrees between each

alternative and the PIS and the NIS, respectively. We calculate the five grey relational

degrees in this paper: the traditional or closeness grey relational degree, the global varia-

tion rate grey relational degree, the local variation rate grey relational degree, the global

synthetic grey relational degree and the local synthetic grey relational degree. When cal-

culating the traditional (closeness) grey relative degree, we set the resolution coefficient

to be ρ = 0.5. When calculating the synthetic grey relative degree, we set the importance

of the closeness and variation rate of the IVHFSs to be λ1 = λ2 = 0.5, the resolution co-

efficient ρ = 0.5 and the resolution coefficient to be ξ = ζ = 0.5, too. The results of the

five grey relational degrees are shown in Table 2.

Step 3: Construct the relative closeness to the ideal solution based on the calculated

IVHFSs five positive and negative grey relational degrees. The IVHFSs five relative close-

ness of the alternative Ai (i = 1,2,3,4) are shown in Table 3.

Step 4: Rank the alternatives according to the decreasing order of the IVHFSs grey relative

closeness, also shown in Table 3.

It can be clearly seen from Table 3 that all the five kinds of grey relative closeness

indicate that decision result is the alternative A2. It is consistent with the decision result

in Jin et al. (2016b), which illustrates the validity and accuracy of the proposed IVHFSs
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Table 2

IVHFSs positive and negative grey relational degrees from the PIS and the NIS.

Methods Relational degrees Alternatives

A1 A2 A3 A4

Traditional (closeness) grey relational degree γ +
w 0.5456 0.9102 0.4834 0.4498

γ −
w 0.7027 0.4360 0.8293 0.8292

Global variation rate grey relational degree γ +
glovw

0.9392 0.9930 0.8945 0.8989

γ −
glovw

0.9048 0.8525 0.9211 0.9397

Local variation rate grey relational degree γ +
lovw

0.9445 0.9915 0.9075 0.9117

γ −
lovw 0.9203 0.8743 0.9186 0.9363

Global synthetic grey relational degree γ +
glosw

0.8826 0.9831 0.8386 0.8411

γ −
glosw

0.9086 0.8169 0.9317 0.9463

Local synthetic grey relational degree γ +
losw

0.8822 0.9819 0.8410 0.8422

γ −
losw 0.9126 0.8233 0.9341 0.9445

Table 3

The five grey relative closeness of the 4 alternatives to the ideal solution.

Relative closeness Alternatives Rankings

A1 A2 A3 A4

Traditional (closeness) grey relative closeness 0.4371 0.6761 0.3683 0.3517 A2 ≻ A1 ≻ A3 ≻ A4

Global variation rate grey relative closeness 0.5093 0.5381 0.4927 0.4889 A2 ≻ A1 ≻ A3 ≻ A4

Local variation rate grey relative closeness 0.5065 0.5314 0.4970 0.4934 A2 ≻ A1 ≻ A3 ≻ A4

Global synthetic grey relative closeness 0.4915 0.5439 0.4738 0.4714 A2 ≻ A1 ≻ A3 ≻ A4

Local synthetic grey relative closeness 0.4927 0.5462 0.4737 0.4706 A2 ≻ A1 ≻ A3 ≻ A4

grey relational degree. Though the rankings are the same, the grey relative closeness is

different. For example, the closeness grey relative closeness of A2 is 0.6761, while the

global synthetic grey relative closeness is 0.5439. It is the variation rate that makes the

effect. If the variation rates of the alternatives approach the variation rate of the ideal so-

lution, then the synthetic grey relative closeness will approach the closeness grey relative

closeness. At this time, the closeness factor plays the vital role. In this example, both the

closeness and the variation rates indicate that A2 is the best alternative, so all the rankings

are the same. If the closeness and the variation rate factors produce different results, we

can not make the decision only by the single one grey relative closeness. Under this con-

dition, we should seek the help of the synthetic grey relative closeness. We will explain

this condition in Example 2 in detail.

5.2. Sensitivity Analysis of Some Parameters

In this subsection, we make a sensitive analysis of these parameters in the synthetic grey

relational degree: the importance of the closeness and the variation rate of the IVHFSs

λ1 and λ2, the two resolution coefficients ξ and ζ . We use the same case in Example 1 to

analyse them.

Firstly, to get the impact of λ1 and λ2, we let ξ and ζ be fixed and modify the pa-

rameter λ1 from 0.1 to 1 to see the trends of the synthetic relative closeness to the four
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(a) Global synthetic relative closeness for alternatives (b) Local synthetic relative closeness for alternatives

with λ1 with λ1

Fig. 2. The trends of the synthetic relative closeness for alternatives with λ1 .

alternatives. Because λ1 + λ2 = 1, changing λ1 is enough. We set the resolution coeffi-

cient to be ξ = ζ = 0.5, then the changing trends of the synthetic relative closeness to the

parameter λ1 from 0.1 to 1 are shown in Fig. 2.

Figure 2(a) shows the global synthetic relative closeness and Fig. 2(b) shows the local

synthetic relative closeness. We can see that the trends of the synthetic relative closeness

vary with the changing of the parameter λ1. When the parameter λ1 increases from 0.1

to 1, the synthetic relative closeness also increases. It is in accordance to the debate in

example 1 that when the importance of the closeness takes a more important role, the

result of the synthetic relative closeness will approach that of the closeness method. In

this example, the closeness method and the variation rate produce the same result, so the

decision results of the synthetic methods do not change with the changing of the parame-

ter λ1. It is alternative A2 all the time. However, if the results of the closeness method and

the variation rate are different, the decision results of the synthetic methods will change

with the changing of the parameter λ1. Therefore, the parameters λ1 and λ2 make impor-

tant impacts in the decision result of the synthetic methods. Furthermore, we can see that

trends of the global and the local synthetic relative closeness vary the same. It illustrates

that anyone of them can be applied for decision without specific demand.

In the sequel, we modify the two resolution coefficients ξ and ζ to see the trends of the

synthetic relative closeness to the four alternatives. We set the parameter to be λ1 = λ2 =

0.5 and make resolution coefficients ξ and ζ increase from 0.1 to 1 simultaneously, then

the changing trends of the synthetic relative closeness of alternative A2 with resolution

coefficients ξ and ζ are shown in Fig. 3.

Figure 3(a) shows the global synthetic relative closeness and Fig. 3(b) shows the local

synthetic relative closeness. According to the above figures, we can observe that although

the synthetic relative closeness varies with the changing of resolution coefficients ξ and

ζ , the changing range is small and it does not change the decision result. It illustrates that

the synthetic relative closeness is not sensitive to the resolution coefficients ξ and ζ . The

reason is that when constructing the synthetic relational degree, the numerator and the
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Fig. 3. The process of the construction of the IVHFSs grey relational degree.

Table 4

Interval-valued hesitant fuzzy data of the known patterns.

Alternatives Attributes

Attribute 1 Attribute 2 Attribute 3

Pattern 1 {[0.05,0.15], [0.15,0.25], [0.25,0.35]} {[0.05,0.15], [0.25,0.35], [0.35,0.45]} {[0.15,0.25], [0.35,0.45]}

Pattern 2 {[0.25,0.35], [0.35,0.45], [0.45,0.55]} {[0.35,0.45], [0.45,0.55], [0.65,0.75]} {[0.55,0.65], [0.65,0.75]}

Pattern 3 {[0.10,0.20], [0.25,0.35], [0.40,0.50]} {[0.10,0.20], [0.40,0.50], [0.55,0.65]} {[0.25,0.35], [0.55,0.65]}

Pattern 4 {[0.15,0.25], [0.25,0.35], [0.65,0.75]} {[0.35,0.45], [0.65,0.75], [0.85,0.95]} {[0.15,0.25], [0.45,0.55]}

Pattern 5 {[0.05,0.15], [0.45,0.55], [0.55,0.65]} {[0.25,0.35], [0.35,0.45], [0.85,0.95]} {[0.25,0.35], [0.55,0.65]}

Pattern 6 {[0.06,0.10], [0.14,0.18], [0.22,0.26]} {[0.06,0.10], [0.22,0.26], [0.30,0.34]} {[0.14,0.18], [0.30,0.34]}

Pattern 7 {[0.09,0.15], [0.21,0.27], [0.33,0.39]} {[0.09,0.15], [0.33,0.39], [0.45,0.51]} {[0.21,0.27], [0.45,0.51]}

denominator all include the resolution coefficients ξ and ζ . The effect of them is reduced

in the division reduction operation. Furthermore, when constructing the synthetic relative

closeness, the effect of them is further reduced. Therefore, the resolution coefficients ξ and

ζ make no obvious impact on the decision results. Actually, the resolution coefficients ξ

and ζ can be adjusted by the decision makers’ preferences.

5.3. Comparison of the Proposed Grey Relational Degree

In this section, we use a pattern recognition example to compare the proposed grey rela-

tional degree with other information measures.

Example 2. Consider a pattern recognition problem. There are seven known patterns 1–7,

which are represented by the IVHFSs. Each pattern has three attributes 1–3. The interval-

valued hesitant fuzzy data of the known patterns are shown in Table 4.

Now, there is one detected unknown pattern to be recognized. The data Q̃ is repre-

sented by IVHFSs, too, which is in the following:

Q̃ =
{

[0.15,0.25], [0.35,0.45], [0.55,0.65]
}

,
{

[0.15,0.25], [0.55,0.65],

[0.75,0.85]
}

,
{

[0.35,0.45], [0.75,0.85]
}

. (34)
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Table 5

The hesitant fuzzy measurement degree for 7 alternatives with 7 different methods.

Methods Alternatives

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7

Similarity 0.7326 0.8791 0.8663 0.8598 0.8791 0.6777 0.7851
Correlation coefficient 0.9959 0.9732 0.9995 0.9611 0.9733 1.0000 1.0000
Traditional (closeness) grey relational degree 0.5996 0.8840 0.8431 0.8501 0.8840 0.5360 0.6761
Global variation rate grey relational degree 1.0000 0.6909 1.0000 0.7736 0.7160 1.0000 1.0000
Local variation rate grey relational degree 1.0000 0.8075 1.0000 0.8629 0.8174 1.0000 1.0000
Global synthetic grey relational degree 0.9169 0.8604 0.9566 0.8743 0.8568 0.9015 0.9321
Local synthetic grey relational degree 0.9441 0.8244 0.9712 0.8390 0.7625 0.9334 0.9546

The goal is to classify the unknown pattern in the 7 known patterns. We use the pro-

posed synthetic grey relative degree to achieve this goal. The attribute weight of the three

attributes is (0.4, 0.4, 0.2). We calculate both the global and the local synthetic grey rel-

ative degree to find the recognition results with the biggest degree. The synthetic grey

relative degrees are shown in Table 5. We can see that both synthetic grey relative degrees

indicate that the detected unknown pattern deserves to be known pattern 3.

In order to show the advantages of the proposed synthetic grey relative degree, we use

the other 5 information measures to compare with each other: the Hamming distance in

Wei et al. (2014b), the correlation coefficient in Chen and Xu (2014), Wei et al. (2014b),

the traditional (closeness) grey relational degree, the global variation rate grey relational

degree and the local variation rate grey relational degree proposed in this paper. The grey

relative degree of these information measures are shown in Table 5, too.

From Table 5, we can see that different information measures produce different results.

The similarity method and the closeness grey relational degree method regard known

pattern 2 and 5 as the best recognition results, while the correlation coefficient refer as the

best recognition result to be known target 6 and 7. The global and the variation rate grey

relational degrees determine the best recognition results to be known pattern 1, 3, 6 and 7.

These three kinds of results are completely different.

The reason is that the similarity method and the closeness grey relational degree

method pay more attention to the closeness of the data, while the correlation coefficient

focuses more on the linear relationship of the data and the global and the variation rate

grey relational degrees emphasize the variation rate of the mean value of the data instead.

When the correlation coefficients of the data are equal, the global and the variation rate

grey relational degrees are equal too, but not vice versa. All these three kinds of infor-

mation measures consider only one factor of the data, either the closeness or the linear

relationship or the variation rate of the mean value of the data. When one of the factors is

equal, they can not distinguish which one is the best and can not make the sole decision.

Therefore, these information measures are only partial measures which can not reflect the

real relationships of the data.

However, the recognition result of both synthetic grey relational degrees is known

pattern 3 only. They can distinguish the result better than the existing informationmeasures

by considering both the closeness and the variation rate factors. It also demonstrates that

the synthetic grey relational degree is superior in discrimination and accuracy than the

existing information measures.
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6. Conclusion

In this paper, we propose the synthetic grey relational degree of IVHFSs and use it to

solve MADM problems with hesitant fuzzy information. We firstly apply the GRA theory

to the IVHFSs and define the closeness grey relational degree. Since the closeness grey

relational degree reflects the closeness of the data just like the distance, similarity and en-

tropy information measures, we explore two novel variation rate grey relational degrees:

the global and the local variation rate grey relational degrees. We use them to describe the

variation rate of the data, which enhances the cognition of the traditional grey relational

degree. Furthermore, we construct the synthetic grey relational degree with the help of

the closeness and the variation rate. The synthetic grey relational degree combines both

the merits of the former two grey relational degrees. It can measure not only the closeness

but also the variation rate of the data, which is a novel information measure for IVHFSs.

Based on the synthetic grey relational degree, we develop a MCDM process with the help

of TOPSIS. We apply this notion in a real MCDM problem about the emergency man-

agement evaluation, which illustrates its validity. We also make a sensitivity analysis of

the parameters in the synthetic grey relational degree. Based on the analysis, we conclude

that the importance of the closeness and the variation rate of the IVHFSs λ1 and λ2 have

obvious effect on the relative closeness while the resolution coefficients ξ and ζ have no

obvious effect it. In addition, we compare the synthetic grey relational degree with 5 infor-

mation measures: distance, correlation coefficient, traditional (closeness) grey relational

degree, global variation rate grey relational degree and local variation rate grey relational

degree, to show its advantages in discrimination and accuracy.

In the future, the notion of the construction of the synthetic grey relational degree is

expected to be used in the information measures for other types of fuzzy sets. Furthermore,

we will devote ourselves to other innovative information measures.
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