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Introduction. There has been a great deal of recent interest
in the stability analysis of numerical methods used for the solution
of partial differential equations. We can divide the analysis into
the following procedures. First, it is necessary to prove the exis-
tence and uniqueness of a solution. Second, we must determine the
stability characteristics of this solution. Various types of stabil-
ity can be investigated, e.g., linear stability, asymptotical stability,
nonlinear stability in a neighbourhood of the steady-state solution.
Such an analysis can be made analytically only in exceptional cases.
Hence there arises a need to develop numerical methods for solving
problems of mathematical physics, which enable us not only to find
a solution but also to get some information about its stability.

The method we analyse in this papér is the continuation of the
ideas proposed by Ciegis ( 19925;). We consider a general approach
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for solving the stability problem. As a rule, iterative methods are
used to solve nonlinear stationary boundary-value problems. Each
iterative method leads to a new time dependent problem with addi-
tional terms depending on a fictitious time variable. We note that
such a transition is not unique. Therefore, it is necessary to com-
pare these various methods. The aim of the present investigation is
to develop iterative methods, which lead to a stable solution for a
set of parameters, as wide as possible. Note that we analyse the in-
troduction of fictitious time as a pure mathematical operation with
a very specific goal to solve the given stationary problem, and to
investigate the stability of its solution at the same time. In appli-
cations stationary mathematical models are obtained by removing
the temporal variable t. Therefore, we can use this evolution model
as one of iterative methods and define this type of stability as la
physical stability. As shown below, various methods of introduc-
tion of fictitious time lead to not coinciding regions of parameters
for which the solutlon is stable and the physically correct one may
be not the best. '

1. The problem class. As >the first example we consider é.
linear boundary value problem

Au = f(z), z €G, (1.1a)
uz)=0," =z€ aG,c‘; =GUdG, (L)

where .
Au_za 7

and the domain Gi 1s in R" w1th bounda,ry 0G and sides parallel to
the’ coordma.te axes., Then introducing a ﬁctltlous time variable,
we ‘obtain a parabohc boundary value problem

Bpu-s zeex@T, ()
u(z,0) = ug(z), z€G, - (1.2b)

u(zt)=0;  z€8Gx 0, T. (29
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By using the Fourier method we get that the solution of (1.2)
converges to the steady-state solution of (1.1) for any initial func-
tion ug(z). Therefore, the steady-state solution is asymptotically
‘stable.

Analogous results are vahd for the d1screte approximation of
(1.1). Let @ be a uniform space grid covering G U G

@h = {(@1i,Zmin): OS2z <1, @ = jh)

Then using finite difference method for (1.1) results in the following
system of equations

Zy-‘?.'t.' = f(z)’ zTE ‘;’h’
i=1

y(z) =0, z€ Bu;',“
There we use notations introduced by Sama,rsku (1983)

y=u(et)  I=dmba),  w=@-y)/n
Yz = (yi - Yi- 1)/h Yo = (.7/:+1 yl')/h

It is sufﬁcxent to consnder an 1mphc1t dlfference scheme

=Aj-f(z), “zewaxwr, .

oAl e

y(:c)—O zeawhxw,,‘ ety

in order to prove the asymptotical ‘stability of the s'i';'ea.dy-'v'stété dif-.
ference solution. -

Next we investigate two 1mporta.nt nonlinear mathematical
models. The first model arises when we treat counterpropagating
waves in a Brillouin- -active medium ‘(see Narum et al., 1988)

L = ), u(0)-1 D

CBO L et =8, sy

where u(z), v(z) are the amplitudes of the forward and backwa.rd
travelhng waves. : L o
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The second mathematical model is more complicated. It de-
scribes optical phase conjugation in stimulated Brillouin scattering
(SBS) with pump depletion. Under steady-state conditions, the
complex pump and SBS amplitudes u(z,r),v(z,r) satisfy the equa-
tions (see Lehmberg, 1982; Volkova, 1988)

B pindu= PP, w0 =ulr), (140
a,(;(,) —iudv= D), (L) =), (14D)
u(z,R) = v(z,R) =0, du(z,0)/0r = 8v(2,0)/0r =0, (1.4c)
Au = %% r-g-%), u = 0.5k, |

where, k is the magnitude of the propagation vectors (assumed
equal for the two vectors), r is the transverse coordinate, and 7(z) >
70 > 0 is the coupling coefficient. Numerical solving of (1.4) is
a nontrivial problem, because the initial conditions for the two
coupled functions u(z,r), v(z,r) are defined on opposite sides of
the region 0 < z < L. The problem (1.4) is solved numerically
by Buzelis et al. (1990), Ciegis, Kairyté and Norvaisas (1990),
Lehmberg (1982, 1983), Volkova (1988), (see also the references
cited in these papers). Iterative methods for the problem (1.4) are
investigated by Ciegis (1990). As to the stability of the solutior of
(1.4) this problem remains open.
We also consider the simplified one dimensional problem

(r=0)
= @), w0)=1, - (150)
d
&

::—7(z)|u(z)|2v(z), ~ v(1)=B. -(1.58)

2. Stability analysis of the problem (1.3). Equations
(1.3) yield the following simple steady-state solution (designated
by the superscript zero):

i) =ep@lBRD), 3= Bew(r(1-%). (1)
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In order to determine the stability characteristics of the steady-
state solution (2.1) a nonstationary time - dependent model can be
used (see Narum et al., 1988)

Ou a - 2 : _

T + 3z i7Q%pv, u(0,t) =1, (2.2a)

ov Ov 2 _ .

%3, =iyQp'y,  (1,t) = B, (2.20)

P L Op o :
-at2+l‘at+ﬂp—uv, : (2.2¢)

u(2,0) = up(z), v(z,0) = vp(2), "(2.2d)

p(2,0) = po(z), p'(2,0) =0,

where the additional equation for the variation of the density p from
its mean value py is introduced. We note that the problem (2.2)
defines the stability of the steady-state solution (2.1) connected
with some physical model of the process in investigatidn

A fictitious time can be mtroduced into (1 3) s1m1]arly to the
method (1. 2)

‘Bu 3u

2 i - SRS '

B~ + i = iv|v|*u, u(‘O,t) 1, o (2.3a)
~Ov Ov - 2 _ R ‘
s —-8 ivlul’v, . v(l,t)=B. o (2 3b)

This model gives another sta.blllty deﬁmtlon of the solutlon (2 1).

First we investigate the model (2.3). In order to determine a linear
sta,blllty of the steady-sta,te solution, we perturb the amplltudes of
the forward and ba.ckwa.rd waves so- tha.t v S

" ) = S+ () exp30) £ i) e, (2a)
v(z t) = v(z)(l + vl(z) exp(At) + vg(z) exp()«‘ )), . (2.4b)

I

g1

where u; (2), v (z) represent small perturba.tlons to the steady state
solutién. Inserting these expréssions into Eqs (2 3) we denve lm-
earized equations for the perturbation amplitudés R

din(z) _

i) Aul(z)+z7|B|2(v1(z)+v,(z)) T (@25a)
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P - zuy(e) - B (wa() + 93(2), (2:50)
i"‘;i—’) = Iy (2) - iy (ul(z) +u3(2)), (2.5¢)
-‘-113—532 = Mvg(2) + iy (ul(z) + u;(z)) . (2.5d)

u1(0) = 0, u2(0) = 0, v1(1) =0, v2(1) = 0. (2.5¢)

If for ReX > 0 a nontrivial solution of (2.5) exists, then the steady
state solution (2.1) will be temporally unstable to the growth of
these perturbations ( linear instability). By adding (2.5a,b) we
obtain the equation '

d(w(z);: BE) o M)+ (), w(0)+u(0) =0,

the particular solution of which is equal to u;(z) + u3(z) = 0. "Then
it follows from (2.5¢,d) and boundary conditions (2.5¢) that v;(t) =
0,v2(t) = 0. Finally we obtain from (2.5a,b,c) that ui(z) = 0,u3(2) =
0, i.e. only a trivial solution u;(z) = 0,vj(z) = 0 of the problem
(2.5) with ReX > 0 exists. Hence we have proved a linear stability
of the steady-state solution (2.1), if the stability is defined by the
nonstationary problem (2.3).

Next we investigate an asymptotical stability of the same so-
lution. After simple calculations we get that the following conser-
vation propertles hold for the solution of (2. 3)

3WP+3M2 3M2_ﬂW
at . Oz o . 9z

It follows from the maximum principle and the boundary conditions
(2.3) that the solution of (2.3) is globally bounded. Moreover, the
method of cha.ractenstxcs ylelds us the equalltxes

=0, =¢_ (26)

|wam2 MV IﬂzmleF 0<z<1, t>1,

hence, the system (2»3) becomes decoupled for t 2 1. By solving’
these SImple problems we get - ERI R

L u(z,t) = &(z), v(z,t) = a(fz),, -0 Sz <1, "‘.,'t

‘;A \V
»
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and for any initial perturbations the solution of the nonstationary
problem (2.3) converges to the exact steady-state solution ‘(2.1).
We have proved the asymptotical stability of this solution when its
stability is defined by the time - dependent model (2.3).

Similar results are valid for the solution of the difference sche-

me
Cw; 2 + Wi 2 . 2+ .12
L = ryl janl” + |l ly1t1| ]-'{JI , vo=1, (2.7a)
2 Yiy1 1Y
.2 12 Jwsa ]2 .2 . '
. |y,+1| + 'yJI ij+l’ + Ile , wy = B. (2.7b)

w; = —1y . -
’ 2 Wi+ W

The time - dependent problem (2.3) is replaced by the difference
scheme (the iterative method)

y—y(=1) _ IW( D + |wl? |92 + ly(=1)? .
h 9 y +y( 1) Yo = 1, (280)
w(-1)-—w _ Iyl2+|y( D o=+ w? . _
o 2 P rw N =B(28)

The following discrete conservation laws hold for (2.7),(2.8)

lyj+1|2 = ij|2 =1, ijlz = lw5+1|2 =B, j=0, L---,N - 1(2'90)
51 = ly(-1)I%, lo(-1)? = jw>. (2.9%)

We obtain from (2.9) that the steady-state solution of (2.7) is
asymptotically stable.

Next we consider the problem (2.2), which a.lso defines some
iterative method. As stated above the sta,blhty defined according
to this model is called a physical stabllxty Lmeanzed equations for
perturba.tlon amplitudes are glven by

-‘?—; = =Au; - i'yIBIzul + i7|B|2v1 + i71|B|2(u1 +v3), (2.10q)
S -t wIBI’uz - ivlBPs; mlBI’(uz +o), (210
= ;\ul + v =iy =i (u2 + vl) o (2.10c5
.= z\vz 1702 + ryu, + :11 (u1 + v,) , ‘ | , . (2.‘1(‘)d)

n= 192/(/\—2.“+»FA,+,93).‘ :
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The investigation of particular solutions of (2.10) shows that there
exist nonstable modes with Re) > 0. The instability threshold for
the system (2.2) is defined as the lowest intensity that yields a so-
lution to the system of linearized equations with Re) = 0 for any
value of Im) (see Narum et al., 1988). We see that the steady-state
solution is not unconditionally stable, if the time-dependent prob-
lem (2.2) is used to define the stability. A numerical investigation
of the whole dynamic system (2.2) confirms the results of linear
analysis: for some value of ¥ > 7, the solution becomes unstable
and evolves from a stable state to a chaotic state as the input in-
tensities are increased following the period-doubling route (see also
Narum et al., 1988). These examples confirm our statement that
the stability of the steady-state solution depends on the iterative
method (nonstationary problem) used to find this solution.

3. Stability anelysis of the problem (1.5). It is easy to
prove that the problem (1. 5) has a unique solution for any param-
eters v,B (see Cxegns and Norvaisas, 1989). Taking into account
the results of Sect.2 we investigate the stability of thls stea.dy-sta.te
solutlon by using a nonstationary problem

B 2 = ot Pz, t) ‘,ugp,t) =1, (31a)
% - z_v = 71|u(z t)lzv(z t), v(lxt‘) =B. " @31

We note that, the a.symptotlca.l sta.blhty is most 1mporta.nt in appll-
catlons, therefore we restrlct ourselves only. to its analysis (for.the .
linear stalnlhty analysxs see C'legxs, 1992a.) After simple calcula-
tions we prove the followmg conservatlon property of the problem

(3 1) R

ik

a(Iul2 ¥ M’) 4+

DTSy fe s deviadt o e g
The nonlmearlty of the problem (3 1) is to complicated to mvestl-
gate it ‘analytically. We use the Humerical experiment method to
analyse the stability of the steady state solutlon Qur . aun 'is not
only to analyse this sta,bllity in the case of the model 1D problem
(1.5), but also to propose and to test d géner'a.l techmque whiich can

2‘ 2y
a(l“l 'vl.,.lfp'_‘>:‘.
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be used for the 2D problem (1.4). The difference scheme for the
nonlinear problem (3.1) is defined by
+ + ]

ye+9:= —’)’le 2w, : |2y] 2y, » H=1, (3.2a)
yJ+12+ Yj |2J+12+ w; , N = B, (3.20)

¥(z,0) = uo(z;),  w(z,0) = vo(z;). - (3:20)
The convergence of the difference scheme (3.2) solution to the so-
lution of (3.1) can be obtained following similar results of Ciegis
(1992b). The steady state solution satisfies the finite dlfference
scheme :

w— W, = 7|

; + 1 v; 4y "
Wy w; i ; [
;z = _,” 2 5 \J+1 |2 J 5 J+l’ Yo = 1, ‘ (330)
0"+0. . &).+ o I .
&, = —| Y 291+1|2 j 2"’1“ . @n=B. (3.3

We use iterative methods proposed by Clegls and Norva.lsa.s (1989)
to find the solution of (3.3).

In numerical experiments thé pa,ra,meters (v, B) were selected
so that to investigate the region of these para.meters important for
applications. The case when backscatter grows from a small noise

. wave, introduced at z = L, was also considered: ‘

< 60, =bo(1-1),  bo=10"%10"2,107, 1.
The main result of the numerical experiment is tha,t in all cases the

solution of (3.2) converges to the steady-state solution y(z), w(z)
“and for any ¢ the following estimates hold

sz - ol <e, Iz - @)l <6 for ¢3T).
Hence, the steady-sta.fe solution is asymptotically stable if the sta-
bility is defined by the time-dependent problem (3.1).
Similarly to the analysis of Sect.2, we can use one more time
~dependent model =~

%:i - 'g—:' = 1."0 u, v(lst) = B) ) (34b)
3_q +(a; +iaz)0 = iguv*, v =g%*/a, (3.4¢)

ot
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where g is defined by g% = y(a;1 + ia;). Mathematical model (3.4)
_gives one more stability definition of the steady state solution. By
using the numerical experiment method we have determined such
sets of parameters (v, B, ai, a;) for which the instability of the
steady state solution arises (see also Chu, Kanefsky and Falk, 1992;
Chow and Bers, 1993). Recall that our goal is to develop iterative
methods (time depende’nt‘problems) for which the steady-state so-
lutlon Témains stable as long as poss1ble Therefore the following
values of the parameters a1 = 0 az >0 must be recomended for
stablhty computations.

- 4. Stability of the problem (1.4) solution. The 2D prob-
lem is more complicated. No results are known about the existence
and uniqueness of its solution (obviously excluding the case when
a classical fixed point theorem of Schauder may be used). One
more interesting detail about the problem (1.4) must be noted. In
many papers in which the results of numerical simulation are re-
ported the convergence of iterative methods is obtained only for
some finite value of the coupling coefficient v < v* (see Lehmberg,
1982,1983; Volkova, 1988; Moyer, Valley and Cimolino, 1988). Two
hypothesis can be proposed. The first conjecture is that this fact
is connected with the internal property of the problem(l 4), i.e.
with the stablhty of its solution. The second conjecture is that the
convergence of 1terat1ve methods’ depends on the dlfference scheme
properties. - Our goal is to lnvestlgate these conJectures Havmg
in mind the results obtained in Sect 2, 3 we propose the followmg
time dependent problem ‘ . ‘

"'au o

%t 'f“*" = -ﬂvi* 5 u(ﬂ Y= ), 7(431&«)“
‘Z gv + wAu = y!ulzv, v(L r, t) = uL(r) ¢ (4.10)

We a,pprox1mate the prob]em (4 1) by the dlfference scheme

e ?“ o o
et s + wAy = ~glaf*§, (0 "k;t ) = uo(rb), (4-20)
W i1 — g + z;lAw = _qu[2 (L )= v(re),  (4.2D)
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where the following notati(&)‘n’s Rare used
5 =05y +ui- Dy §=050+6io1)

The convergence of the solution of (4.2) to the solution of (4.1) is
investigated by Ciegis (1989). ~

‘As is noted above, we have no existence and umqueness re-
sults for the problem (1.4). In order to get a boundary condition
(4.1b) for which some steady-state solution really exists (perhaps
not unique), we solve an auxiliary 'i'illitial value problem

Ys +ipAg = —glo’g, | y(O,‘rk) =u(rs), (439)
w0 = —glgfB, w0 = w(w), | (43)
and define the boundary condltlon as vL(r,,) = w(L r;,) o

REMARK 1. Such a choice ena.bles us not’ only to get the bound-
ary condition vy(ry), but also to obtain the exact steady-state so-
lution. Hence, we can investigate the a.symptotlcal stablllty in a
nelghbourhood of the solution. | : '

In our numencal 31mulat10ns we take

‘U()(r) doLo(O r f) + d1L1(0 r, f) +- d Lm(O r f),

where Li(z,m, f) are the’ Laguerre functmns For example in. the
most simple case, when m=0". - . : :

uo(r) = exp(—0. 5r2(1 + zl/f))

The initial condition for the ba.cl:seatter ;s glven by a random rep-
resentation : :

o vo(z) = c(,Lo(di“ | (4.4)

The numerlca.l expenments proves. the followmg results.
Ci. Conwergence:'of the iiterative method (4.2). In all ‘cases
for sufficiently small value of 7 the iterative method (4.3)
converges to some steady state solution.
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C2. Stability of the solution of (4.3). The stability of the so-
lution of (4.3) depends on the number of modes presented
in (4.4) (we fixed the parameter m = 0 in all computa-
tions). If p = 0, then the steady state solution remains
stable for any values of the parameter g. For example the
simulations give the correlation function value H = 0.9992
and the total reflectivity Ro = 0.95 for g '= 0.07, where we
defined

R
ru(r,0)v(r, 0)dr|?
o LCCOIE o~

(O 1lv(0)]? ()12

A situation becomes more complicated when we use p = 5 in
(4.4) and select ¢; such that for the exact solution Hy = 0.396.
The exact steady state solution remains stable till g = 0.005 (or
Ry ~ 0.85). After this for g > 0.005 it becomes unstable and (4.2)
converges to the another solution with H > H,. This new solution
remains stable and the conjugation charakteristic H is improved
monotonically with increased values of the coupling coefficient g,
e.g., the simulations give Ro = 0.958, H = 0.872 for g = 0.02. More
detailed results ofa computa,tlonal experiment are given by Buzelis
et al., 1990. ,

Next we lnvestlgate our second conJecture For this purpose
we approximate the problem (1.4) by the following sphttmg scheme
(see Volkova, 1988; Lehmberg, 1982) -

0 _

Yy —% y° +yk

h by iait s (4.50)
w? ;wk —‘ipAw -;w;, =0, ' ‘ (4.56)
yk.;H}: y° - _glwk+12-+’->w° |2 yk+12+ yO’ . (4.5¢)
‘wktlh_v; ;o \ ‘yk+l2fy |2 wk+12+»u-) ) : (4 5d)

Analogycally to (4 3) we can state mltlal value problem for (4.5)

y(O, ) = uo(r;,), , w(O, ) = vo(r). (4.5¢)
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The obtained solution w(L,ry) is used as a boundary condition for
the problem (4.5) with two point conditions (vL(rk) = w(L,rt))

y(O,rk) = uo(rk), 'UN(TI:) = 'UL(T'Ic)- (4.5f)

The covergence of the initial value problem solution is investigated
by many authors (see Sanz-Serna, 1984; Ciegis, 1989; Ivanauskas,
1989). The following error estimates are valid

lly(z) — (@Il < C(h +hF),  |lw(z) = v(2)ll < C(h +h),

where hg is the mesh size of the discrete grid w,. In order to solve
nonlocal problem (4.5a-d, f) we use the iterative method similar
to (4.2)

0 0 o

] :y 4+ ¥ ;@kﬂmﬁt’;@k:m | (4.6a)
. N -0 0 . i°

Yk+1 :yk+1 + yk+1h— y _ —glwk+l2+ w |2 y’°+12+ y_ (4.68)
-0 0 -0 sy +100.0 1 0

W -;w 3 wk.,.lh— W _ glyk+12+y |2 wk+12+w , (4.6¢)
i =L o - D n B - By, (4.6d)

Some results of numerical simulations are presented in Tables 1, 2.
Boundary conditions for (1.4) were given by formulas

up(r) = exp(—0.5r%(1 + i/ f)),

vp(r) = co(Lo(L,r, )+ erla(L, 7, f) + -+ calo(L, 7, f)),
co = 0.025, ¢; = 0.1+ 0.8, c; = —0.3 +i0.6,
ca=1+i0.1, c4=05—i0.7.

We solved (1.4) for the following values of parameters’

" L=0.0231, £=00169, p=05 R=3.18,
h=L/(N-1), ho=R/(M-05), N=100, M =100.

The well-known Talanov transformation:was implemented in our
algorithm in order to solve numerically the propagation of focused
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laser beams accurately (see Volkova, 1988.) First we used the dif-
ference scheme (4.2). The values of H and R, are presented in
Table 1 for various values g. We see that the steady state solution
is stable for all g. '

Table 1. Results for the difference scheme (4.2)

g 3.462 5.193 8.654 13.847 | 25.963
Ro 0.042 0.219 0.524 0.718 0.863
H 0.953 0.957 0.953 0.961 0.977

Next we solved (1.4) using the splitting difference scheme (4.5)
and the iterative method (4.6). The convergence was obtained only
for g < go, N =50, M =50 (see Table 2). Such stability property of
the steady state solution (4.5) is due to the discretization proper-
ties of the splitting method and is not connected with the internal
stability of the differential problem (1.4). A more detailed analysis
of this interesting phenomena will be given in a separate paper.

Table 2. Results for the difference scheme (4.6)

g 1.731 3.462 4.327 5.193 > 0.003
Ry 0.002 0.043 0.119 0.22 —
H 0.731 0.947 0.957 0.955 -

5. General stability analysis. In this section we present
some general conclusions. Our aim is to investigate efficient itera-
tive methods for solving a nonlinear problem

Ay=f. S (5.1)

In particular we consider iterative methods which are expressed in
the following from : .

_B(yk)g'i“‘fr—:-q’i + Ay = f. (5.2)
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In the simplest cases B = E + TR (see, for example, (1.4), (1.6)).
For B = E we get the classical explicit iterative method. The error
function z; = y — yi satisfies the problem

Bl 22 4 4G a =0, 6A(y>=("—‘;§‘ji)). (5.3)

Next we assume that B = E. A sufficient condition for the conver-
gence of the iterative method (5.2) follows from the energy equality

lzearll? + 7llzell? + 27(8Aze, z2) = ||zlf?

which is obtained from (5.3) multiplying it by 27z;. If (6Az, ) > 0,
then we get that ||zi41]] < }|zz||. Hence the iterative method (5.2) is
convergent and the steady-state solution of (5.1) is asymptotically
stable according to our stability definition. For many problems
arising in applications (e.g. the electrocontact modeling problem,
which is investigated by Ciegis, Ciegis and Ciupaila, 1992) the con-
dition (6A(y)z, z)*> 0 is used to define the stability of the solution.
Therefore, the iterative method (5.2) with B = E enables us both
to find a solution, and to prove its stability at the same time. A
divergence of the iterative method shows that a steady state solu-
tion (if any) is not asymptotically stable (we deal with the global
asymptotical stability there). If only stable solutions are of interest
to us, then the explicit iterative method B = E or its modifications
B = E + 7R are recommended for solving (5.1). It follows from
the analysis given above that in order to find nonstable solutions
of (5.1) we must eliminate the modes v;, i =1,2,---,Jo, which cor-
respond to eigenvalues ); with Re\; < 0. For some problems this
can be done efficiently if the basic 1tera.t1ve method (5.2) is supple—
mented with the orthogonal projection step

=P(yk)’ (yk,v.-)=0, i=12,---,Jo.

But a more general method to overcome the instability of the steady
state solution is to use the Newton method, for which B = §A(y).
Then the error function satisfies the equa,tion

6A(y,,)’—"+‘n—‘ + 6A(ye)ze + z T52A() 2 = 0. (5.4a)
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Multiplying this equation by (§A(y*))~! we get

— 1 . - .
______zk+1rk % b a4+ 5% (BA()) 0% A@Gi)ze = 0. (5.4b)
For the classical Newton method 7, = 1, and the problem becomes
even simpler

1 ~
Zpp1 = Ez{(ﬁA(y,,))-lszA(yk)z,,. (5.4¢)

It follows from (5.4) that Newton’s method is convergent if a suffi-
ciently good initial approximation of the exact steady state solution
is given. Therefore, with such a choice of the operator B the conver-
gence of (5.2) does not depend explicitly on the signs of eigenvalues
Re)i. The divergence of the Newton method doesn’t give any in-
formation about the stability of the solution either. These results
show that the value of different iterative methods can be reesti-
mated when new classes of problems are considered. For example
explicit iterative methods proved to be supperior to the Newton
method when a stability of the solution is analysed along with its
existence.
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