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Abstract. Crossover operators play a very important role by creation of genetic algorithms (GAs)
which are applied in various areas of computer science, including combinatorial optimization. In
this paper, fifteen genetic crossover procedures are designed and implemented using a modern C#
programming language. The computational experiments have been conducted with these operators
by solving the famous combinatorial optimization problem – the quadratic assignment problem
(QAP). The results of the conducted experiments on the characteristic benchmark instances from
the QAP instances library QAPLIB illustrate the relative performance of the examined crossover
operations.

All crossover procedures are publicly available with the intention that the GA researchers will
choose a procedure which suits the individual demand at the highest degree.

Key words: metaheuristic methods, genetic algorithms, genetic crossover operators, combinatorial
optimization, quadratic assignment problem.

1. Introduction

Many optimization problems belong to the class of NP-hard problems (Garey and Johnson,
1979). These problems pose a real challenge for the researchers who develop algorithms
for solving such problems. A considerable progress is achieved by using, in particular,
genetic algorithms, which are based on imitation of evolution occurring in live nature
(Holland, 1975; Goldberg, 1989; Sivanandam and Deepa, 2008; Simon, 2013; Heaton,
2014).

The GA developers are constantly seeking to enhance the performance of GAs. The
goal is to create the genetic algorithms that are in competitive advantage with respect
to other types of (meta)heuristic optimization algorithms. To achieve this goal, there is
a high need in developing and investigating the essential “building components” of the
genetic algorithms, among others, the crossover (recombination) operators (Herrera et

al., 2003). Despite the significant progress in the design of crossover operators during the
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last decades, there still is a room for further improvement of this kind of operators (Deep
and Thakur, 2007; Maenhout and Vanhoucke, 2008; Abdoun and Abouchabaka, 2011;
Kaya, 2011; Magalhães-Mendes, 2013).

The crossover operators (along with mutation operators) constitute the basis for suc-
cessful functioning of GAs (Misevičius et al., 2005). Here, the key idea is that a new
genetic information is created by reordering the genetic code which is present in two (or
more) predecessors. In this way, the inheritance of the existing traits and the acquirement
of completely new features well fit each other. In the course of the crossover procedure,
the successor inherits what the best is accumulated in the predecessors; at the same time,
a novel combination of the genetic code – which is absent in the parents – comes into
being. Thus, the optimization process gets diversified by exploring new and promising
areas in the search space. This synergy of creativeness and exploration is probably the
most significant reason why the genetic algorithms are so successful (Goldberg, 2002).

In this paper, we consider, in particular, the genetic crossover operators of different
kind and expose the results obtained from the numerical experiments with these operators.
Although the principles of functioning of the majority of the considered operators are not
new, the crossover implementations in modern C# programming language appear quite
original. We also propose three innovative crossover operations.

• First, we offer an enhancement of the so-called swap-path crossover – swap-path
descent crossover – which benefits from taking into account the problem-specific
information.

• Second, the so-called universal crossover operator is proposed, where the goal is to
provide more flexibility and versatility in the crossover process.

• Third, a gene translocation procedure is introduced, which is non-traditional in the
sense that it is based on “many-parents-many-children” approach, rather than a usual
“two-parents-one-child” scheme.

All these crossover operators are publicly available for the researchers who want to
contribute to the further progress of genetic and evolutionary computation.

The paper is structured as follows. Firstly, some definitions are given and basic fea-
tures of the crossover operations are described. Then, the crossover operator details are
provided. The newly proposed crossover operators are marked with the symbol ‘⋆’. Fi-
nally, the results of experimental comparison of the considered crossover procedures are
presented. The paper is completed with concluding remarks.

2. Preliminary Remarks

In the most general case, the crossover process enables to transmit the genetic code of two
or more agents (called parents) to one or more successors (called children) in a specified
deterministic-like way. Ideally, in the crossover operation, the chromosomes of two par-
ents are recombined in such a way that the child’s chromosome contains only the parents’
genes. This is the main distinguishing feature of crossover process and, thus, crossover op-
eration is quite opposite to mutation, which is of pure stochastic nature. However, it should
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be noted that the crossover process can involve indirect randomness due to explicit and

implicit mutations (Misevičius, 2006).

Let us consider (without a significant loss of generality) the crossover operators in-

tended for the permutation-based combinatorial optimization problems. Remember that

the permutationp is formally defined as a collectionp = (p(1),p(2), . . . , p(i), . . . , p(n));

p(i) ∈ {1,2, . . . , n}, i = 1,2, . . . , n; p(i) 6= p(j), i, j = 1,2, . . . , n, i 6= j . Indeed, it is

not very difficult to modify the permutation-based crossovers so that they become suit-

able also for the classical genetic algorithms, which commonly use the bit string-based

crossovers. Mathematically, a two-parents-one-child crossover can be described using a

binary operator ψ : 5n ×5n →5n such that:

p◦ =ψ(p′,p′′) 6= p′ ∨ p◦ =ψ(p′,p′′) 6= p′′, if p′ 6= p′′, (1)

where 5n denotes a set consisting of all possible permutations of size n; p′, p′′, p◦ are

permutations (here, p′, p′′ denote the parents, p◦ denotes the offspring). It appears that

the offspring may sometimes be identical to one of the parents, especially in the cases

where the parents tend to be very similar. The permutation is usually associated with

the individual’s chromosome; then, the permutation element p(i) corresponds to a gene

occupying the ith locus of the current chromosome (consequently, n is the length of the

chromosome).

Formally, the crossover operator must ensure that the offspring’s chromosome neces-

sary inherits the genes which are common for both parents, i.e.:

p′(i)= p′′(i) ⇒ p◦(i)= p′(i)= p′′(i), i = 1,2, . . . , n, (2)

here, again, p′, p′′, p◦ denote parents and an offspring, respectively.

Every element in the permutation is unique and the crossover operation should address

this aspect. It doesn’t concern the bit strings. Meanwhile, in the case of permutations, some

discrepancies are possible, i.e. the so-called “foreign” (random) genes may occur. This

does not mean that the crossover is incorrect – simply, this is caused by specific properties

of permutations.

A plenty of variants of various computer realizations of crossover operators exist, de-

pending on the details and peculiarities of implementation.2 There is a lot of freedom here

for both the implementers and end-users of the crossover operators: the implementers offer

new operator variations and the end-users choose them according to their special needs.

2The most recent detailed surveys on crossover operators can be found in Umbarkar and Sheth (2015), Pavai
and Geetha (2017).
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Fig. 1. Graphical illustration of one-point crossover.

3. Genetic Crossover Operators Used in the Study

3.1. Representative Examples of Known Crossover Operators and Their Variants

3.1.1. Point-Based Crossovers

3.1.1.1. One-Point Crossover. This is very likely the most commonly used crossover
operator for the genetic algorithms (Goldberg, 1989). It is not difficult to implement, but
still quite efficient. Roughly, the basic idea is as follows. A single crossover point is chosen
in one of the two chromosomes. The point position x can be determined by generating a
(pseudo-)random number within the interval [1, n− 1] (n is the chromosome length). The
offspring is obtained by copying x genes from one parent, the rest of the genes are copied
from the second parent. The feasibility of the offspring must be preserved (see Fig. 1).

3.1.1.2. Modified One-Point Crossover. A slight disadvantage of the straightforward
one-point crossover lies in tendency of having certain genes more “ordered” than others
(compare, for example, the gene sequences “82396” and “1475” in Fig. 1). In the modified
crossover, either the genes from 1 to x , or the genes from x to n are copied with probability
1

2
from one of the parents, the rest are copied from the opposite parent.

3.1.1.3. Two-point crossover. The two-point crossover works similarly to the one-point
crossover, except that two crossover points x1 and x2 (1 6 x1 < x2 6 n) are used. In a
similar fashion, one can construct a three-point crossover, and so on (De Jong and Spears,
1992).

3.1.2. Uniform Crossovers

3.1.2.1. Uniform Crossover – I. The principle of the uniform crossover is also simple
(Syswerda, 1989). At first, the common genes are copied to the offspring’s chromosome.
Then, the unoccupied loci (positions) in the offspring’s chromosome are scanned from left
to right and the empty loci are assigned the genes – one at a time – from one of the parents

with probability 1

2
, i.e. p◦(i)=

{

p′(i), ς < 1

2

p′′(i), otherwise;
here, ζ is a uniformly distributed

(pseudo-)random number from the interval [0,1]. The assigned gene must be unique. In
case there are still empty loci, they are filled in with random genes (see Fig. 2).
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Fig. 2. Graphical illustration of uniform crossover.
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Fig. 3. Graphical illustration of shuffle crossover.

3.1.2.2. Uniform Crossover −II (Quasi-Uniform Crossover). The uniform crossover
can be modified in such a way that the probability of the assignment of genes is no longer
equal to 1

2
, but is greater or less than 1

2
. In this way, we can prefer one of the parents (for

example, the better parent).

3.1.2.3. Shuffle Crossover. The shuffle crossover is obtained by randomly reordering the
parents’ genes before applying the uniform crossover (Caruana et al., 1989). The same
rearrangement rule must be used for both parents. After the uniform crossover is finished,
the same (initial) rearrangement rule is again applied (see Fig. 3).

3.1.3. Partially-Mapped Crossover

Partially-mapped crossover (PMX) can be seen as a modified variant of the k-point (multi-
point) crossover. The initial version of PMX was designed for the travelling salesman
problem (Goldberg and Lingle, 1985), but it may be adapted also for other optimization
problems. The basic principle relies on the so-called mapping sections (the chromosome
segments between mapping points). So, at first, the segments of the chromosome of the
chosen parent are moved to the offspring’s chromosome. The same is done for the other
parent. At last, the empty loci (if any) are filled in in a random way (see Fig. 4). Note that
if k = n, then PMX becomes very similar to the uniform crossover.

3.1.4. Swap-Path Crossovers

3.1.4.1. Swap-Path Crossover – I. Swap-path crossover (SPX) (Glover, 1994) differs
from the above crossover operators in that it is oriented basically to the permutation-based
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Fig. 4. Graphical illustration of partially-mapped crossover.
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Fig. 5. Graphical illustration of fragment of swap-path crossover.

problems. The main distinguishing feature of SPX is that instead of transferring genes
from parents to a child, the genes are, so to speak, rearranged in the chromosomes of the
parents. Let (p′,p′′) be a pair of parents. Then, the process starts from some chosen po-
sition and the loci are scanned from left to right. The process continues until a predefined
number of swaps, s, (s < n) are performed. If, in the current position, the genes are the
same for both parents, then one moves to the next locus; otherwise, a pairwise interchange
of genes of the parents’ chromosomes is accomplished. The interchange is performed in
both parents. For example, if the current locus index is equal to i and a = p′(i), b= p′′(i),
then there exists a locus j such that b = p′(j), a = p′′(j); then, after a swap, p′(i)= b,
p′′(i)= a, in addition, p′(j)= a, p′′(j)= b. Consequently, the new chromosomes p′′′,
p′′′′ are produced. Thus, in the next generation, a pair (p′′′,p′′′′) is considered, and so on.
The graphical example of SPX is shown in Fig. 5.

3.1.4.2. Swap-Path Crossover – II (Heuristic Swap-Path Crossover). A modification to
the standard SPX can be achieved when the best offspring (with respect to the fitness of
the offspring3) is retained in the course of gene interchanges (Ahuja et al., 2000). In this
way, we get a heuristic swap-path crossover, where the quality of the offspring is taken
into account.

3.1.5. Cycle Crossover

The cycle crossover (CX) (Oliver et al., 1987) slightly resembles the swap-path crossover
and is based on the pairwise gene interchanges. The principal property of CX is the ability

3The fitness of an individual is associated with the value of an objective function of an optimization problem.
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Fig. 6. Graphical illustration of cycle crossover.

to produce the offspring without distortion of the genetic code; in other words, CX enables
to create the chromosome with no foreign genes. The negative aspect of CX is that the
offspring may genetically be very close to their predecessors or even identical to them. (For
example, if in the given illustration (see Fig. 6) the second chromosome is a bit changed
to “254169783”, then, after the cycle crossover, the offspring’s chromosome becomes
duplicate to the chromosome of the first parent.)

3.1.6. Cohesive Crossover

The cohesive crossover was proposed by Z. Drezner to efficiently recombine individuals’
genes by solving the quadratic assignment problem. In this case, the appropriateness of
the genes – which is calculated according to the problem data – is taken into consideration.
From the several recombinations of genes, the recombination is selected that minimizes
the objective function. The details of implementation of the cohesive crossover are de-
scribed in Drezner (2003).

3.1.7. Multi-Parent Crossover

In the multi-parent crossover, several (or all) members of a population participate in cre-
ation of the offspring (Eiben et al., 1994). More precisely, the ith locus of the offspring’s
chromosomep◦ is assigned the value j with the probability P(p◦(i)= j) (under condition
that the value j has not been utilized before).

The probability P(p◦(i)= j) is calculated according to the formula:

P(p◦(i)= j)= qij

/

n
∑

j

qij , (3)

where P(p◦(i)= j) denotes the probability that p◦(i)= j ; qij is an element of a desir-
ability matrix Q = (qij )n×n; here, qij denotes the number of times that the ith locus takes
the value j in the parental chromosomes. Of course, qij 6 t (t is the number of parents).
If there exist several values (j1, j2, . . .) with the same probability, then one of them is
chosen randomly. The above rule applies to all genes of the offspring (see Fig. 7).



506 A. Misevičius et al.

)j

 

4 3 6 7 1 2 9 8 5 

4 3 6 7 1 9 5 8 2 

4 6 3 1 7 5 9 2 8 

4 7 3 1 8 5 9 6 2 

5 6 3 1 2 4 9 7 8 

0 0 0 4 1 0 0 0 0 

0 0 2 0 0 2 1 0 0 

0 0 3 0 0 2 0 0 0 

3 0 0 0 0 0 2 0 0 

2 1 0 0 0 0 1 1 0 

0 1 0 1 2 0 0 0 1 

0 0 0 0 1 0 0 0 4 

0 1 0 0 0 1 1 2 0 

0 2 0 0 1 0 0 2 0 

4 6 3 7 1 5 9 8 2 

 

 

 

 

five parents 

  

  

 elements of desirability matrix 

 

8,0)4)1((P
10

114 ===° å
j

jqqp

 

4,0)6)2((P
10

226 ===° å
j

jqqp

 and so on 

offspring p° 

 

Fig. 7. Graphical illustration of multi-parent crossover.

3.2. Newly Proposed Crossover Operators

3.2.1. Swap-Path Descent Crossover⋆

The swap-path descent crossover (SPDX) is similar to the heuristic swap-path crossover
in that it takes into consideration the values of the objective function. The SPDX operator
resembles the descent local search (hill-climbing) procedure in some sense. The advan-
tage of this operator is in the dynamic evaluation of the offspring fitness: only the gene
interchanges that improve the value of the objective function and lead to a better fitness
of the offspring are accepted.

3.2.2. Universal Crossover⋆

The universal crossover (UNIVX) distinguishes for its versatility and the possibility of
flexible usage. It is somewhat similar to what is known in the literature as a simulated
binary crossover (Deb and Agrawal, 1995).

Our operator is based on the use of a random mask. There are four controlling param-
eters: α, β , γ , χ . The mask length is equal to α, where α is a (pseudo-)random number
within the interval [ε1, n], n is the chromosome length, ε1 = ⌊h·n⌋, h – the user’s param-
eter close to 1, for example, 0.9. The mask contains binary digits 0 and 1, where 1 means
that the corresponding gene of the first parent needs to be cloned and 0 means that the
gene of the second parent is cloned. The main goal is to create the mask as versatile as
possible. The randomness of the mask can be controlled by parameters β , γ . The param-
eter β (β ∈ [ε2, ε3], 0< ε2 6 ε3 < 1) enables to regulate how many 0’s and 1’s there are
in the mask: the more value of β , the bigger total number of 1’s is in the mask, and vice
versa. The arrangement of bits is dictated by the parameter γ . The bit generation itself can
be accomplished by using an (indeterministic) sorting algorithm, which may be viewed as
a kind of “anytime” algorithm. If the sorting algorithm is interrupted at some random mo-
ment, one gets the randomized sequence of bits. The moment of interruption is defined by
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Fig. 8. Graphical illustration of universal crossover.

the number z, where z= γ ·w, here γ is a (pseudo-)random real number from the interval
[0,1], w – maximum number of iterations of the sorting algorithm. (For example, if the
bits of the mask “000001111” are sorted in descending order and the algorithm is stopped
when γ = 0.9, then the random mask “101100010” is generated.) Having the mask gener-
ated, the decision is made as to about what genes have to be transmitted to the offspring’s
chromosome. The starting position of the transferred genes, χ , is generated randomly so
that χ ∈ [1, n]. At last, the empty loci (if any) are filled in randomly.

The illustrative example of the universal crossover with the parameters α = 9, β = 4

9
,

γ = 0.9, χ = 1 is presented in Fig. 8.

3.2.3. Gene Translocation⋆

So far, a single child is created from two or more parents. In the gene transloca-
tion (GT) procedure, many children are produced from many parents. The GT proce-
dure is performed in an iterative way. The total number of iterations is equal to m,
m = max{1; 0,01·c·d(n − 1)}, where c denotes a translocation coefficient (in percent)
(0 < c 6 100), d is the population size and n denotes the chromosome length. At each
iteration of the GT procedure, three random integers ζ1, ζ2, ζ3 are generated. The first two
integers (ζ1, ζ2) are from the interval [1, d], ζ1 6= ζ2. The integer ζ3 is within the interval
[1, n]. Let (pζ1

,pζ2
) be a pair of parents such that pζ1

is the ζ1th member of the current
population, meanwhile pζ2

is the ζ2th member of the population. Then, if the genes at the
ζ3th locus are the same for both parents, one continues with the next iteration; otherwise,
the pairwise gene interchange is performed (similarly to the swap-path crossover). That
is, if the current locus index is equal to ζ3 and aζ1

= pζ1
(ζ3), aζ2

= pζ2
(ζ3), then, after the

interchange, either pζ1
(ζ3) becomes equal to aζ2

, or pζ2
(ζ3) equal to aζ1

. The iterations
of gene translocations are continued until the maximum number of iterations has been
reached. As a result, the new population is produced in which there are c percent new
genes.

An illustrative example of the GT procedure with the parameters n = 9, d = 4, c =

20%, m= 6 is shown in Fig. 9.

4. Computational Experiments

We have conducted the computational experiments in order to compare the efficiency of
the considered crossover operators. The experiments have been carried out on the basis
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Fig. 9. Graphical illustration of gene translocation.

of the difficult combinatorial optimization problem – the quadratic assignment problem
(Çela, 1998). This problem can be concisely formulated as follows. Given two integer
matrices A = (aij )n×n, B = (bkl)n×n and a set 5n of permutations of the integers from 1
to n, find a permutation p = (p(1),p(2), . . . , p(n)) ∈5n that minimizes

f (p)=

n
∑

i=1

n
∑

j=1

aijbp(i)p(j). (4)

In the experiments, we have used the benchmark instances from the electronic public li-
brary of the QAP instances – QAPLIB (Burkard et al., 1997). We experimented with the
following fifteen crossover operators4:

1) one-point crossover – 1PX;
2) modified one-point crossover – M1PX;
3) two-point crossover – 2PX;
4) uniform crossover – UX;
5) quasi-uniform crossover – QUX;
6) shuffle crossover – SX;
7) partially-mapped crossover – PMX;
8) swap-path crossover – SPX;
9) heuristic swap-path crossover – HSPX;
10) swap-path descent crossover – SPDX;
11) cycle crossover – CX;
12) cohesive crossover – COHX;
13) multi-parent crossover – MPX;
14) universal crossover – UNIVX;
15) gene translocation – GT.

4The source texts (in C# programming language) of the crossover operators for the QAP can be found at:
http://www.personalas.ktu.lt/˜alfmise/.
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All the above crossover operators have been tested using the genetic algorithm, which
was implemented in C# programming language by A. Misevičius and D. Kuznecovaitė.
In this algorithm, the number of generations is equal to 100 and the population size is
equal to 10. The crossover operators were run 10 times with the different chromosome
pairs during each generation of GA (thus, each crossover procedure was run 1000 times
on every benchmark instance). (The exception was gene translocation, which was run 100
times.) The experiments were performed on a 3.1 GHz personal computer.

In the experiments, we used the following criteria for the evaluation of the efficiency
of the crossover operators: 1) the minimum deviation (δmin) of the best found solution
from the best known (pseudo-optimal) solution (BKS) (BKSs are from QAPLIB); 2) the
average deviation (δ̄) from BKS; 3) the decrement of minimum deviation (1min) during
the execution of GA; 4) the decrement of average deviation (1̄). The following are the
formula for calculation of the above criteria:

δmin = 100(fmin − f ∗)/f ∗ [%], (5)

δ̄ = 100(f̄ − f ∗)/f ∗ [%], (6)

1min = 100(δ0

min
− δmin)/δ

0

min
[%], (7)

1̄= 100(δ̄0 − δ̄)/δ̄0 [%]. (8)

The notations are as follows: fmin – the best found value of the objective function (see
formula (4)); f ∗ – the best known (pseudo-optimal) value of the objective function; f̄ –
the objective function value averaged over all members of the final obtained population;
δ0

min
– the minimum deviation calculated for the best individual of the initial population;

δ̄0 – the average deviation calculated for all the individuals of the initial population (note
that the initial population is generated randomly before the execution of GA).

We have utilized two different types of benchmark instances: tai10a (n= 10), tai30a
(n = 30), tai50a (n = 50) and tai10b (n = 10), tai30b (n = 30), tai50b (n = 50). The
instances tai10a, tai30a, tai50a are generated in a random way (Taillard, 1991); whereas
the instances tai10b, tai30b, tai50b are generated pseudo-randomly in such a way that the
data resemble a distribution of real-world problems (Taillard, 1995).

For the sake of more fairness, the following three different variants of the genetic algo-
rithm were examined: 1) the standard genetic algorithm without mutation; 2) the standard
genetic algorithm with a mutation procedure; 3) the hybrid genetic algorithm with an inte-
grated local search procedure. Mutation is operationalized by the use of random pairwise
gene interchanges, meanwhile the local search uses deterministic gene exchanges which
improve the fitness of an individual.

The obtained results of all performed experiments are presented in Tables 1–7. The
best achieved values of the crossover operators are in bold. Note that the CPU times differ
unimportantly and are omitted.

After analysis of the experimental results, the most essential observations are as fol-
lows.

• The obtained results are very influenced by the size and nature of test data. The
large instances are more difficult to solve when comparing to smaller instances. Also,



510 A. Misevičius et al.

Table 1
Results of the comparison of crossover operators for the instances tai10a, tai10b (GA variant 1).

tai10a tai10b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 11,01 20,80 25,69 17,28 24,29 30,20 62,58 49,54
M1PX 12,11 21,66 24,51 16,45 24,29 30,20 62,58 49,54
2PX 19,99 24,50 16,67 13,80 41,98 46,44 38,18 32,95
UX 17,46 20,33 19,07 17,74 38,65 42,57 40,78 36,56
QUX 21,57 26,17 15,21 12,29 47,02 52,74 34,48 27,47
SX 20,07 23,60 26,58 14,62 15,84 33,64 62,60 45,68
PMX 15,50 18,09 21,00 19,98 30,37 35,31 47,82 43,88
SPX 12,65 16,73 23,93 21,37 26,20 31,40 51,71 48,17
HSPX 18,28 22,63 31,27 15,53 21,33 30,25 56,60 49,48
SPDX 5,34 9,46 34,87 33,34 7,67 9,44 70,82 72,03

CX 20,00 30,74 16,66 8,36 47,98 67,23 33,80 16,42
COHX 0,59 4,09 38,19 36,11 20,86 22,50 57,09 58,93
MPX 15,44 17,72 21,07 20,35 15,49 27,63 63,00 52,54

UNIVX 21,37 24,44 15,39 13,85 52,82 54,88 30,51 25,70
GT 12,61 13,31 23,98 25,03 1,54 3,40 84,27 88,29

Table 2
Results of the comparison of crossover operators for the instances tai10a, tai10b (GA variant 2).

tai10a tai10b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 0,00 1,47 100,00 69,61 0,00 1,03 100,00 90,70
M1PX 0,43 1,94 73,42 68,97 0,00 1,08 100,00 90,62
2PX 2,30 3,45 70,97 66,95 0,28 1,65 93,17 89,53
UX 0,00 1,38 100,00 69,75 0,00 0,96 100,00 90,84
QUX 0,45 1,81 73,38 69,16 0,00 0,94 100,00 90,88

SX 2,30 3,66 70,97 66,68 0,00 0,91 100,00 90,93

PMX 2,43 3,88 70,81 66,38 0,00 0,96 100,00 90,84
SPX 0,64 2,07 73,13 68,81 1.65 2,58 91,11 88,80
HSPX 0,59 2,11 73,19 68,74 0,00 0,96 100,00 90,84
SPDX 0,43 1,70 74,95 72,06 0,00 0,95 100,00 90,86
CX 0,00 3,44 100,00 66,96 0,28 2,11 93,17 88,66
COHX 3,33 5,24 69,67 64,62 0,00 1,05 100,00 90,68
MPX 2,43 5,40 70,81 64,42 0,00 0,92 100,00 90,92

UNIVX 2,43 4,18 70,81 65,99 0,00 0,96 100,00 90,84
GT 0,92 2,94 72,76 67,63 0,00 1,13 100,00 90,52

it seems that the random medium- and large-scale instances are harder than their real
life counterparts. This is true for all the crossover operators.

• The main differentiation in the results is due to distinct configurations of the inner
structure of the genetic algorithm, rather than due to the crossover operations them-
selves. Presumably, not only the crossover operator, but also mutation is important.
The crossover enables to diversify the search process, it is explorative and can dis-
cover new regions in the search space. Meanwhile, the mutation allows to intensify
the search process, it is rather exploitative and creates random, but small diversions
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Table 3
Results of the comparison of crossover operators for the instances tai30a, tai30b (GA variant 2).

tai30a tai30b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 5,82 6,68 16,40 13,28 4,18 4,63 93,32 91,85
M1PX 6,73 7,22 15,44 12,71 7,56 7,67 98,49 86,32
2PX 5,49 6,93 16,75 13,01 12,42 12,89 82,07 77,53
UX 6,39 7,28 15,80 12,65 4,17 5,01 93,33 91,14
QUX 6,83 7,59 15,33 12,32 3,68 3,94 94,05 93,16

SX 6,51 7,55 15,67 12,37 1,67 1,85 97,10 97,21

PMX 5,48 6,31 16,76 13,67 5,35 5,60 91,62 89,94
SPX 7,15 7,57 15,00 12,35 6,74 7,04 89,64 87,45
HSPX 4,37 5,68 17,96 14,35 7,94 8,28 87,98 85,25
SPDX 4,51 5,73 17,00 13,97 7,65 7,81 98,44 88,78

CX 6,30 6,76 15,89 13,20 9,49 10,77 95,88 88,00
COHX 4,56 5,33 17,75 14,73 9,11 9,26 96,38 83,55
MPX 6,68 7,88 15,50 12,02 7,77 7,85 98,21 86,01
UNIVX 6,84 7,76 15,33 12,14 12,72 12,83 81,70 77,62
GT 7,60 8,21 14,54 11,68 9,13 9,41 96,36 84,30

Table 4
Results of the comparison of crossover operators for the instances tai50a, tai50b (GA variant 2).

tai50a tai50b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 8,70 8,98 13,32 10,35 8,13 9,15 65,02 55,71
M1PX 7,16 7,92 14,90 11,42 8,84 9,67 64,08 54,97
2PX 8,13 8,67 13,90 10,66 7,31 7,96 66,13 57,43
UX 8,41 8,89 13,62 10,43 9,78 10,74 62,84 53,48
QUX 8,68 9,03 13,35 10,29 6,12 7,92 67,77 57,49
SX 6,65 7,32 15,42 12,06 11,78 13,33 60,28 49,97
PMX 7,91 8,59 14,13 10,74 6,33 6,40 67,48 59,75
SPX 5,31 5,96 16,85 13,49 5,47 6,16 68,68 60,10

HSPX 6,88 7,59 14,18 11,77 8,07 8,62 65,10 56,47
SPDX 4,93 5,07 17,13 14,52 6,08 6,45 67,09 59,81

CX 7,76 8,65 14,28 10,68 8,93 10,04 63,96 54,46
COHX 5,71 5,98 16,42 13,46 12,45 12,79 59,45 50,69
MPX 9,17 9,58 12,85 9,74 5,57 5,77 68,54 60,70

UNIVX 7,15 7,73 14,91 11,62 7,32 7,63 66,12 57,91
GT 9,26 9,61 12,77 9,71 10,69 12,25 61,67 51,42

staying near (in the neighbourhood of) the parent. Both have their role. They com-
plement each other; there exists a mutual interaction between them, which increases
the overall performance of the genetic algorithm.

• The results clearly demonstrate that the hybrid genetic-local search algorithm out-
performs the standard variant of the genetic algorithm with respect to all examined
criteria. Thus, the deterministic intensification, i.e. local search, is evidently more
helpful than the stochastic intensification, i.e. mutation.

• The differences in the effectiveness of particular crossover operators are not statisti-
cally very significant. These differences are even more minimized if crossovers are
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Table 5
Results of the comparison of crossover operators for the instances tai10a, tai10b (GA variant 3).

tai10a tai10b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 0,00 1,01 100,00 97,57 0,00 1,12 100,00 98,82
M1PX 0,00 1,06 100,00 97,45 0,00 1,05 100,00 98,90
2PX 0,00 1,04 100,00 97,50 0,00 1,26 100,00 98,67
UX 0,00 1,01 100,00 97,57 0,00 1,28 100,00 98,65
QUX 0,00 0,54 100,00 98,71 0,00 0,81 100,00 99,15

SX 0,00 0,92 100,00 97,80 0,00 0,91 100,00 99,04

PMX 0,00 0,87 100,00 97,91 0,00 0,97 100,00 98,98
SPX 0,00 0,87 100,00 97,91 0,00 1,43 100,00 98,49
HSPX 0,00 1,38 100,00 96,70 0,00 1,10 100,00 98,84
SPDX 0,00 0,46 100,00 99,13 0,00 0,98 100,00 99,02
CX 0,00 1,46 100,00 96,51 0,00 1,17 100,00 98,76
COHX 0,00 1,04 100,00 97,49 0,00 0,72 100,00 99,24

MPX 0,00 0,75 100,00 98,20 0,00 0,94 100,00 99,01
UNIVX 0,00 0,59 100,00 98,57 0,00 0,99 100,00 98,95
GT 0,00 0,75 100,00 98,20 0,00 1,24 100,00 98,69

Table 6
Results of the comparison of crossover operators for the instances tai30a, tai30b (GA variant 3).

textbftai30a tai30b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 2,12 2,26 88,83 89,18 0,19 0,26 99,68 99,75
M1PX 1,55 1,96 91,83 90,60 0,17 0,30 99,71 99,71
2PX 0,72 0,98 96,19 95,29 1,40 1,51 97,66 98,56
UX 1,28 1,70 93,23 91,84 0,00 0,03 100,00 99,97

QUX 2,04 2,65 89,21 87,31 1,40 1,62 97,65 98,45
SX 1,43 1,53 92,47 92,66 0,00 0,04 100,00 99,96

PMX 0,74 1,03 96,10 95,06 0,00 0,05 100,00 99,95
SPX 1,45 1,84 92,35 91,17 1,40 1,46 97,66 98,61
HSPX 3,00 3,84 84,14 81,56 1,70 2,79 97,16 97,34
SPDX 0,87 1,05 95,56 94,45 0,00 0,08 100,00 99,92
CX 2,24 2,75 88,15 86,80 1,40 2,07 97,65 98,03
COHX 0,94 1,27 95,05 93,91 2,22 2,54 96,29 97,58
MPX 1,00 1,42 94,72 93,18 0,00 0,04 100,00 99,96

UNIVX 1,59 1,94 91,62 90,69 0,00 0,03 100,00 99,97

GT 1,39 1,86 92,66 91,07 0,11 0,20 99,82 99,81

tested in the “hybrid environment”. Still, it can be observed that the multi-parent
crossover and especially the swap-path descent crossover – which uses the heuristic
information – seem, on average, to be superior to other operators. Further experi-
ments could be recommended in order to corroborate this observation.

Despite the limited extent of our experiments, the scope of applications of the consid-
ered crossover operators is not constricted to the permutation-based problems as long as
bit-string genetic algorithms are utilized. Regardless of the differences of implementation,
the principles of functioning of these crossovers (possibly with the exception of heuristic
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Table 7
Results of the comparison of crossover operators for the instances tai50a, tai50b (GA variant 3).

tai50a tai50b

δmin δ̄ 1min 1̄ δmin δ̄ 1min 1̄

1PX 2,47 2,67 86,91 86,82 0,41 0,44 99,28 99,37
M1PX 1,46 1,59 92,23 92,15 0,25 0,32 99,56 99,55

2PX 2,06 2,23 89,04 88,99 1,01 1,03 98,22 98,53
UX 2,60 2,76 86,17 86,38 0,30 0,34 99,48 99,51

QUX 1,56 1,70 91,73 91,62 1,19 1,24 97,91 98,23
SX 1,97 2,10 89,56 89,65 1,24 1,27 97,82 98,19
PMX 2,00 2,20 89,38 89,14 1,49 1,52 97,38 97,83
SPX 1,78 2,23 90,53 89,01 0,78 0,81 98,63 98,84
HSPX 3,53 4,05 81,25 80,00 1,84 3,96 96,77 94,34
SPDX 1,37 1,46 93,27 93,18 0,21 0,29 99,61 99,58

CX 2,55 2,85 86,45 85,93 0,60 0,68 98,94 99,03
COHX 2,13 2,41 88,68 88,11 0,67 0,70 98,82 98,99
MPX 2,44 2,52 87,06 87,57 0,63 0,64 98,90 99,08
UNIVX 1,58 2,08 91,60 89,71 1,46 1,51 97,44 97,85
GT 1,83 2,10 90,26 89,63 0,46 0,48 99,20 99,31

crossovers) are rather general and invariant. This is especially true for our proposed uni-
versal crossover that is straightforwardly replicable to bit-string GAs, which, in turn, are
applicable to both combinatorial and continuous optimization problems.

5. Concluding Remarks

In this paper, fifteen crossover operators for genetic algorithms were investigated. The
investigation has been carried out on the quadratic assignment problem, which is a repre-
sentative example of the challenging permutation-based combinatorial optimization prob-
lems.

We experimented with the point-based crossovers, uniform crossovers, shuffle
crossover, partially-mapped crossover, swap-path crossovers, cycle crossover, cohesive
crossover, multi-parent crossover, among others. In addition, we have introduced the en-
hanced swap-based crossover (swap-path descent crossover), in which the improvements
of the values of the objective function are taken into consideration. Also, we propose
the so-called universal crossover, which can be flexibly adapted to meet the require-
ments/requests of the algorithm’s user. Additionally, the gene translocation procedure
is presented, in which many parents produce many children during each generation of the
genetic algorithm.

We expect that the considered crossover procedures, along with the proposednew ones,
will be beneficial for the solution of a wide class of optimization problems. Problem-
oriented, heuristic crossover procedures seem to be a good alternative to canonical,
general-purpose crossover operators. It also seems that the attention should be focused
on the deterministic local search procedures, thereby capitalizing on the synergy of re-
combination (diversification) and intensification in genetic algorithms.
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