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Abstract. This paper presents a simple differential speech signal coding algorithm, based on back-
ward adaptation. The considered algorithm is executed in frame by frame manner, by implementing
predictive and adaptive quantization techniques. Both prediction and adaptation are performed back-
ward, based on the previously quantized input signal frame. This enables us to obtain high quality
output signal, without increasing the bit rate. This research puts emphasis on the quantizer design,
with the optimal support limit determination, and theoretical performance evaluation. Objective
quality of the output signal is evaluated through signal to quantization noise ratio (SQNR). We per-
form theoretical and experimental analysis of the algorithm performance and provide comparative
results of implementing speech signal coding techniques with similar complexity. Experimental re-
sults show that our simple differential speech coding algorithm satisfies the G.712 Recommendation
for high-quality speech coding at the bit rate of 6 bits per sample. This indicates that the algorithm
can be successfully implemented in high quality speech signal coding.

Key words: speech coding algorithm, backward adaptive technique, prediction coding, differential
coding.

1. Introduction

It is well known that due to living in the digital era, we meet digitized signals daily,
regardless of our occupation and personal interest. As capability to speak represents a
crucial human characteristic, which separates humans from other living beings, speech
signal takes high place in digital signal processing. Therefore, digital processing of
speech signal has always occupied interest and a lot of research was conducted, for
the purpose of representing speech signal with the smaller bit rate, while preserving
sufficient quality (Jayant and Noll, 1984; Kondoz, 2004; Chu, 2003; Sayood, 2017;
Rabiner and Schafer, 1978). Speech signal coding implies the application of a data com-
pression technique to digitized speech signal samples, by using certain amount of bits per
sample (Gibson, 2016). The goal is to achieve high quality, by using fewer bits per sample
possible. Speech signal coding plays a crucial role in any technology used for speech trans-
mission, as: voice over Internet protocol (VOIP), digital cellular communications, and any
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system working with digitized speech (Chu, 2003). Latest expansion in software applica-
tions, which offer functionality of voice and video communication, further emphasizes on
speech coding, for the purpose of more efficient usage of the available data transmission
bandwidth. By lowering the bit rate, we also lower the objective quality of the signal, so
that signal compression always presents a compromise between the desired signal quality
and the available bandwidth for transmission, or memory for storing the output signal.
Different speech coding standards require fulfilling certain conditions regarding bit rate
and signal quality (Chu, 2003).

This paper presents a novel waveform speech signal coding algorithm, based on dif-
ferential coding scheme. Waveform coding is suitable for application in speech signal
coding, and it is known that this type of coding can provide the highest level of speech
signal quality (Jayant and Noll, 1984; Kondoz, 2004; Chu, 2003). One of the most famil-
iar and commonly used, simple waveform coder is defined by the G.711 standard (ITU-T,
1972). G.711 coder is known as Pulse Code Modulation (PCM), with two basic types,
µ-law and A-law. As PCM utilizes 8 bits per sample, a lot of research was performed for
reducing the bit rate, while preserving original quality of the input signal (Kondoz, 2004;
Gibson, 2016). Along with the bit rate, modifications and improvements have been
done in the usage of available frequency bands (ITU-T, 2008). For instance, ITU-T,
Recommendation G.711.1 allows implementation in narrowband and wideband speech
signal coding, with sample frequency up to 16 kHz and bit rate ranging from 64 to
90 kbit/s. Since the used bit rate has significant impact on overall algorithm perfor-
mance, certain techniques have been introduced to lower the bit rate, like linear pre-
diction technique (Jayant and Noll, 1984; Kondoz, 2004; Chu, 2003). Linear predic-
tion implies that the value of the current input signal sample can be represented as
a linear combination of the previous samples. The earliest system which implemented
this technique was Differential Pulse Code Modulation (DPCM), where prediction has
been implemented for calculating the error (difference) signal (Jayant and Noll, 1984;
Suma, 2012). Difference signal is obtained by subtracting the input signal sample from its
predicted value. The main benefit of implementing differential coding is that the obtained
difference signal is characterized by smaller variance and lower dynamic amplitude range.
This means that the difference signal is more convenient for coding than the original in-
put signal, regardless of the applied coding scheme type. Simplicity and benefits from
implementing differential coding maintains this and related techniques interesting for ex-
ploitation and motivate researchers to consider it when designing new solutions and algo-
rithms. For instance, in Uddin et al. (2016), a low bit rate speech signal coding algorithm
with the implementation of DPCM has been analysed, and it has been shown that differ-
ential coding is suitable for application in coding of correlated speech signals. Predictive
coding, which utilizes correlation as well, has been recently implemented in designing
a LPC-Based Fronthaul Compression Scheme (Ramalho et al., 2017, 2018), designed to
compress LTE signal, by means of predictive and Huffman coding. The compression sys-
tem from Ramalho et al. (2017, 2018) is characterized by low computational complexity
and low latency, while preserving high output signal quality. Microcontroller implementa-
tion of DPCM and ADPCM in speech signal compression has also been recently presented
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in Sarade (2017), and it has been shown how ADPCM can take advantage of correlated
signals to achieve more efficient signal compression compared to DPCM technique.

Further implementing the adaptation techniques into DPCM resulted in ADPCM
(Adaptive DPCM) algorithm, which exploits correlation between the input signal sam-
ples and reduces the bit rate required for coding (Jayant and Noll, 1984). Adaptation is
most commonly implemented as forward or backward adaptation (Jayant and Noll, 1984;
Kondoz, 2004; Chu, 2003; Sayood, 2017). Adaptive quantization has wide area of im-
plementation, as it represents a simple method for increasing the objective quality of the
output signal. It is successfully applied in speech coding (Suma, 2012; Dinčić et al., 2016),
image and video coding (Ortega and Ramchandran, 1995), as well as in wireless sensor
networks (Fang and Li, 2008). In this paper, we combine adaptive quantization with simple
differential coding to perform high quality speech coding. The algorithm is convenient for
improvements by implementing more complex differential coding and quantization tech-
niques. As we design a low complexity algorithm, this is left to future research.

The coding algorithm developed in this research is based on the backward adaptive
technique, so it does not require transmission of the side information. This allows the
developed coding algorithm to be used in the cases when small delay is required, without
increasing the bit rate, as is the case of using forward adaptation, where transmission and
coding of the side information is required.The goal is to achieve high quality output speech
signal, which would meet the G.712 Recommendation for a high-quality speech coding
(ITU-T, 2001), by using a low bit rate. Speech signal can be modelled with Gaussian
or Laplacian probability density function (p. d. f.) (Kondoz, 2004). The algorithm we
propose considers both models of the input signal p. d. f. and as will be shown, in the case
of the Gaussian distribution it provides higher quality of the output signal for each value
of the compression factor µ. Eventually, for achieving high performance of the proposed
algorithm, it is important to determine the support limit of the quantizer in the specific
manner to minimize the signal distortion (Na and Neuhoff, 2001), which we also take into
account in designing our quantizer.

The rest of the paper is organized as follows. Section 2 describes the support limit
determination for the Gaussian source model. In Section 3, the basic principles of differ-
ential coding are described. The description of the novel differential speech signal coding
algorithm is presented in Section 4, while the results of its application are presented and
discussed in Section 5. Finally, Section 6 is devoted to conclusions.

2. Support Limit Determination for the Quasilogarithmic Quantizer of Gaussian

Source

In designing speech signal coding algorithm, input signal has to be modelled by some
probability distribution function (PDF). It is well known that speech signal can be success-
fully modelled by Gaussian (normal) distribution (Jayant and Noll, 1984; Kondoz, 2004;
Chu, 2003; Sayood, 2017). PDF for a random variable with the Gaussian distribution with
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mean value denoted by α and variance by σ 2 is defined as Jayant and Noll (1984):

p(x,σ ) = 1√
2πσ 2

exp

{

− (x − α)2

2σ 2

}

. (1)

Without loss of generality, we can assume that information source is memoryless Gaussian
source with mean value equal to zero. PDF of thus defined Gaussian source is given by:

p(x,σ ) = 1√
2πσ 2

exp

{

− x2

2σ 2

}

. (2)

Quantization is a significant part in the digitalization process. A quantizer is defined as
the structure of encoder and decoder (Jayant and Noll, 1984). Role of a quantizer is to
perform mapping of the input signal amplitudes into the group of permitted amplitudes.
An N -level scalar quantizer Q is defined by mapping Q: R ∈ Y , where R represents a set
of real numbers, while Y ≡ y1, y2, y3, . . . , yN ⊂ R, is a set of representation levels that
makes the code book of size |Y | = N (Jayant and Noll, 1984). Scalar quantizer divides
a set of real numbers into N cells Ri = (ti−1, ti ], i = 1, . . . ,N , where ti , i = 0,1, . . . ,N

are decision thresholds of the quantizer, defined as Q(x) = yi , x ∈ Ri . In practice, during
the process of scalar quantization, the region of an input signal is divided into granular
and overload regions, which are separated by the support region thresholds −tN−1 and
tN−1 . Minimum and maximum support region thresholds define the support region of
the quantizer [−tN−1, tN−1], which has a high influence on the total distortion of the
quantizer (Jayant and Noll, 1984; Na and Neuhoff, 2001; Na, 2004). In order to determine
the optimal support region, we implement an iterative numerical method for determining
the support region thresholds. Optimal support limit can be found by minimizing the total
distortion. In the case of quasilogarithmic quantizer and an input signal modelled with
Gaussian source, with mean value equal to zero and variance σ 2 = 1, granular distortion
is defined by Jayant and Noll (1984):

Dg = ln2(µ + 1)

3N2

[

t2
N−1

µ2
+ tN−1

2

µ

√

2

π
+ 1

]

, (3)

where µ represents the compression factor. In the case of implementing larger compres-
sion factors, as is the case with the quantizer defined with the G.711 standard, where
µ = 255, (µ ≫ 1) the term of the equation 1

µ2 tends towards zero, so that Eq. (3) can be
approximated as:

Dg = ln2(µ + 1)

3N2

[

2

µ

√

2

π
tN−1 + 1

]

. (4)

For a quantizer with a support region threshold tN−1 and input signal modelled by Gaus-
sian PDF of zero mean and unit variance, overload distortion can be calculated as Na and



An Algorithm for Simple Differential Speech Coding Based on BAT 543

Table 1
Support limit convergation for different starting values chosen.

R Compression Starting value 1st iteration 2nd iteration 3rd iteration
bit rate factor µ tN−1

3 4.3869 4.1760 4.2028
3.5 4.3001 4.1869 4.2014

6 255 4 4.2264 4.1963 4.2002
4.5 4.1622 4.2046 4.1991
5 4.1052 4.2122 4.1981

Neuhoff (2001):

Do =
√

2

π

2

t3
N−1

exp

{−t2
N−1

2

}

. (5)

The total distortion represents the sum of the granular and the overload distortion D =
Dg + Do . Minimizing the distortion in relation to the tN−1 is performed as:

∂D

∂tN−1
= 0. (6)

From Eq. (6) we can obtain the optimal support limit, which is iteratively calculated by:

t
(i)
N−1 =

√

√

√

√

∣

∣

∣

∣

2 ln

(

1

µ

ln2(µ + 1)

3N2

t
4(i−1)
N−1

t
2(i−1)
N−1 + 3

)
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∣

∣

. (7)

For the purpose of increasing the algorithm speed, we use only two iterations and ob-
tain the result near the optimal one, where optimality refers to the solution of Eq. (6). The
initial values are chosen intuitively, as it is known that the iterative procedure converges
to the same output for different initial values. Table 1 shows the convergation of support
limit values, when different starting values are chosen.

As already stated, in this research we have chosen to implement quasilogarithmicquan-
tizer to perform input signal quantization. It represents a good choice, especially in the
case of adaptive quantization, where we can easily adjust the quantizer by changing the
compression factor. Also, a quasilogarithmic quantizer can be defined by the closed form
formulas, which makes the design and analysis simple. Quasilogarithmic quantizer per-
forms signal compression by applying a compressor function defined by Jayant and Noll
(1984):

cµ(t) = tN−1

ln(1 + µ)
ln

(

1 + µ
|t|

tN−1

)

sgn(t), |t| 6 tN−1. (8)

By finding and implementing the optimal support limit and choosing the appropriate com-
pression factor, we obtain a simple and efficient quantizer, which combined with the dif-
ferential coding and backward adaptation technique is capable to provide a high quality
output signal.
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3. Theoretical Background of Differential Coding

Signals in nature are often correlated, meaning that the successive samples have values
similar to a certain extent (Jayant and Noll, 1984; Chu, 2003). Wideband speech signal,
sampled at 16 kHz, can be considered to be a correlated source, which can be practically
examined by calculating the correlation coefficient of a real speech signal. For an input
signal x[n], n = 1, . . . ,M , with the length of M samples, the correlation coefficient can
be calculated by:

ρ =
∑M−1

n=1 x[n] × x[n + 1]
∑M

n=1(x[n])2
. (9)

Differential coding (DPCM) exploits the correlation of the successive samples of the in-
put signal to reduce the redundancy of the input. It is based on quantizing the difference
(prediction-error) signal e[n], which is obtained by subtracting the input signal x[n] from
the signal prediction xp[n] formed between the actual value of the current sample and
predicted value of the previous sample (Jayant and Noll, 1984; Chu, 2003). Prediction is
commonly performed by implementing linear prediction, in which current sample is pre-
dicted as a linear combination of the previously quantized samples (Jayant and Noll, 1984;
Makhoul, 1975; Markel and Gray, 2013). The number of previous samples used in pre-
diction represents the order of a predictor. Function of the k-th order linear predictor is
defined as:

xp[n] =
k

∑

l=1

al x̂[n − 1], (10)

where al , l = 1,2, . . . , k are the prediction coefficients, while x̂[n − 1] represents the
previously quantized input signal samples. The main benefit of differential approach is
that prediction-error signal has smaller variance and dynamic amplitude range, which
makes it more suitable for quantization (Suma, 2012). Quantizing prediction-error signal
enables us to achieve higher SQNR for a given resolution, or equally given number of
quantization levels N .

DPCM encoder and decoder are presented in Fig. 1. Output of the encoder are indices
i[n], by which the decoder obtains quantized prediction error, which is used in forming the
quantized input. The thus defined DPCM system has been successfully implemented in
speech (Jayant and Noll, 1984; Ortega and Ramchandran, 1995), image coding (Zschunke,
1977), as well as in ECG signal coding (Peric et al., 2013a). We implement DPCM prin-
ciples in designing a speech coding algorithm presented in this paper. The combination of
differential coding and backward adaptation provides a simple and efficient coding scheme
without increasing the bit rate used. The contribution of this research lies also in the opti-
mal quantizer design with utilization of correlation in speech signal coding. This enables
us to obtain high quality output signal, while implementing the simplest differential cod-
ing. The following section describes the design and implementation of the algorithm we
propose.
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Fig. 1. DPCM encoder (top) and decoder (bottom).

4. Algorithm for Differential Adaptive Coding of Speech Signal

Designing a speech coding algorithm is not a simple task, since a speech coding algorithm
has to comply with the following Chu (2003):

1. Use low bit rate;
2. Provide high output signal quality;
3. Be robust in a wide area of possible speakers and languages;
4. Have low computational complexity and low coding delay.

We have chosen to implement low complexity coding techniques with the possibility of
using small frame sizes. This enables the algorithm to be implemented when small delay is
required, as is the case in real time speech communication or package transmission of data.
Since the coding algorithm includes encoder and decoder, both blocks will be described
in steps separately. The purpose of the encoder is to convert the input signal into a form
convenient for transmission and to send the encoded bit-stream to transmission channel
as indices (Jayant and Noll, 1984). The designed algorithm encoder is described in the
following.

As we implement backward adaptation technique, the first frame of the input signal
does not have the required information for this process, as there was no information before.
This is overcome by implementing PCM encoder (ITU-T, 1972) to the first frame of the
input signal. As the same bit rate was implemented for all frames, the usage of PCM
encoder for the first frame cannot significantly degrade the overall quality of the output,
while it provides the initialization of the algorithm. The first encoded frame is used for
accessing the statistical information required for the backward adaptation process, which is
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based on the previous, encoded frame. In the following steps, we calculate and implement
the statistical data from the previous frame for coding the current one. Firstly, we calculate
the correlation coefficient, starting from the second frame. The correlation coefficient used
for coding the current j th frame can be determined with the implementation of Eq. (9) as:

ρ(j−1) =
∑M−1

n=1 x̂(j−1)[n] × x̂(j−1)[n + 1]
∑M

n=1(x̂
(j−1)[n])2

, j = 2, . . . ,L, (11)

where L represents the total number of the input signal frames, M is the total number of
samples in the frame, while x[n] and x[n + 1] denote the current and the next sample of
the current input signal frame, respectively. The next parameter used is the variance of the
previously quantized frame, defined by:

[

σ
(j−1)

x̂

]2 = 1

M

M
∑

n=1

(

x̂(j−1)[n] − η(j−1)
)2

, (12)

where η(j−1) = 1
M

∑M
n=1 x̂(j−1)[n], j = 2, . . . ,L represents the mean value of the quan-

tized (j − 1)th signal frame.
Difference signal frame is formed in sample by sample manner, as:

d(j)[n] = x(j)[n] − ρ(j−1)x̂(j)[n − 1]. (13)

The next step is to calculate difference frame variance, which is defined by:

[

σ
(j)
d

]2 =
[

σ
(j−1)

x̂

]2(
1 −

[

ρ(j−1)
]2)

. (14)

The last step of encoding is the application of the designed adaptive quasilogarithmic
quantizer (Qad) to the difference signal sample:

d̂(j)[n] = Qad

[

d(j)[n]
]

, (15)

where the adaptive quantizer has the support region threshold defined by:

t
(j)
N−1 = tN−1 × σ

(j)
d , (16)

where tN−1 is obtained from Eq. (7). Thus defined adaptive support region thresholds
contain information about the input signal, as in the case of implementing backward adap-
tation and differential coding represents the information about the previously quantized
difference signal frame. In this manner, by implementing few simple calculations we adapt
the quantization process to the input signal and its statistics and obtain better signal com-
pression. Finally, the output of the described encoder is sent through the channel as binary
information (I). The encoded values are received and decoded for the purpose of recon-
structing the input signal.
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Decoding represents an inverse process to encoding, with the purpose of extracting the
input signal from its encoded representation. The first frame of the input signal is decoded
by applying the PCM decoder (ITU-T, 1972). By reconstructing the first frame, we are
able to extract the data required for decoding the following one. As in the encoding proce-
dure, firstly we extract the correlation coefficient of the previous frame, by implementing
Eq. (11). The next statistical parameter from the previous frame used is the variance, calcu-
lated by implementing Eq. (12). When we have the information about the previous frame
variance, we can apply the inverse quantization to obtain the difference signal sample:

d̂(j)[n] = Q−1
ad [I ]. (17)

Actual input signal sample can be reconstructed as:

x̂(j)[n] = d̂(j)[n] + ρ(j−1)x̂(j)[n − 1]. (18)

This step completes the decoding procedure, as we obtain the values of the quantized input
signal samples.

The encoding algorithm can be presented as a series of the following steps:

Step 1. The first frame (j = 1) is fed to the buffer.
Step 2. The samples of the first frame are successively encoded by PCM encoder and

decoded by local PCM decoder for the purpose of initialization.

From the second to the last frame (for j = 2, . . . ,L) the following steps repeat:

Step 3. Each frame is fed to the frame buffer.
Step 4. From the previously quantized frame, the correlation coefficient ρ(j−1) and

variance [σ (j−1)

x̂
]2 are calculated (Eqs. (11) and (12)).

Step 5. Difference signal is formed in sample by sample manner, where the correlation
of the previously quantized frame and the previously quantized signal sample
are used (Eq. (13)).

Step 6. Difference signal is fed to the input of variance-adaptive quasilogarithmic
quantizer, which is adapted to the variance [σ (j)

d ]2 given by Eq. (14).
Step 7. Encoded difference signal frames are sent through the channel as binary infor-

mation.

The decoding procedure is performed by applying the following steps:

Step 1. The first frame is decoded with PCM decoder.

From the second to the last frame the following is repeated:

Step 2. Output frames are fed to the frame buffer.
Step 3. Information about the previous frame correlation coefficient and variance is

extracted.
Step 4. Output signal sample is obtained from the quantized difference signal, quan-

tized previous sample and from the correlation coefficient of the previously
quantized frame (Eq. (18)).
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Step 5. Samples are fed to the output frame buffer, where we have reconstructed signal
samples.

By performingquantization, we introduce an irreversible error due to rounding the current
values of the input signal to the representation levels. This error is named quantization
error and it can be expressed by distortion, which is commonly defined as the average
value of a mean-squared error (Jayant and Noll, 1984). Eqs. (3)–(5) define theoretical
distortion for the quasilogarithmic quantization of Gaussian source. In the case of applying
algorithm in real input signal coding, distortion can be calculated by:

D = 1

S

S
∑

n=1

(

x[n] − x̂[n]
)2

, (19)

where S represents the total number of the input signal samples. Thus defined distortion
with input signal power determines signal to quantization noise ratio, an objective signal
quality measure, used in this paper (Jayant and Noll, 1984):

SQNR[dB] = 10 log10

( 1
S

∑S
n=1(x[n])2

D

)

. (20)

5. Numerical Results and Analysis

This section presents the numerical results of applying the proposed algorithm in speech
signal coding. In addition, we observe the theoretical characteristics of the basic cod-
ing schemes implemented in differential speech signal coding, to show the improvements
which are results of the algorithm design. As we implement quasilogarithmic quantization,
firstly we analyse the theoretical performance of the quasilogarithmic quantizer. This rep-
resents the case when quantization is performed only by applying quasilogarithmic quan-
tization, with 6 bits per sample and the usage of different compression factors. Speech
signal is modelled with the Gaussian distribution with zero mean and unit variance, as it
has been assumed in the proposed algorithm design. Additionally, we show the theoretical
performance of the quasilogarithmic quantizer in the case of using Laplacian distribution
with zero mean and unit variance for modelling a speech signal. In the case of using
Laplacian distribution, optimal support limit of quasilogarithmic quantizer can be defined
as Jayant and Noll (1984):

t
Lap

N−1 =















1√
2

ln
(

3N2µ

ln2(1+µ)

)

, µ> 255

1√
2

ln
(

3N2µ

ln2(1+µ)

1+ 1
µ ln(

3N2µ

ln2(1+µ)
)

)

, µ < 255.
(21)
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Fig. 2. Theoretical dependence of SQNR on compression factor for the quasilogarithmic quantizer that is de-
signed for Gaussian vs. Laplacian source models for speech signal.

The total distortion of the quasilogarithmic quantizer designed for the Laplacian source
can be calculated by Kondoz (2004), Peric et al. (2013b):

DLap = ln2(µ + 1)

3N2

[

(t
Lap

N−1)
2

µ2
+

√
2t

Lap

N−1

µ
+ 1

]

+ exp
{

−
√

2t
Lap

N−1

}

. (22)

We show the results for the case of using smaller compression factor values, ranging from 2
to 50, as our algorithm implements adaptive quantization and it is expected that it will have
the best performance in this range of compression factors. Figure 2 shows the benefits of
modelling speech signal with Gaussian source, as the quasilogarithmic quantizer designed
for Gaussian source provides better theoretical SQNR characteristics.

The figure shows that the highest theoretical SQNR value in the case of using Gaussian
model is obtained for the compression factor equal to 4 and it amounts to around 31.3 dB.
When using Laplacian model, maximum is obtained in the case when compression factor
is equal to 10, and it amounts to around 29.2 dB. One can notice that the theoretical
maximum in SQNR is greater when using Gaussian source model, and the gain amounts to
2.1 dB. For higher compression factor values SQNR characteristics are in steady decline,
while the gain is obtained for all compression factor values. This confirms the benefits of
modelling speech signal with the Gaussian distribution.

In order to evaluate the performance of the proposed coding algorithm, an experiment
was also conducted. The input signal has been a 15 seconds long sequence of a male
speech signal, sampled at 16 kHz. The objective quality measure used in the experiment is
SQNR, expressed in dB. Along the performanceof the proposed algorithm, we analyse the
performance of the algorithm without using adaptive quantization and PCM scheme. The
advantage of implementing adaptive quantization is observed through the obtained gain in
SQNR, especially for lower compression factor values. Comparison with PCM indicates
significantly higher objective output signal quality obtained with the implementation of
the proposed algorithm.
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Table 2
Experimentally obtained SQNR for the proposed algorithm with comparison.

R Frame Compression SQNRPCM SQNRNON-AD SQNRAD
bit rate size factor µ [dB] [dB] [dB]

10 24.0995 3.7499 35.7590
20 24.0995 7.4873 36.3638
30 24.0995 9.7586 36.4615

6 40 40 24.0995 11.3872 36.4439
50 24.0995 12.6633 36.4267
100 24.0995 16.5379 36.0445
255 24.0995 21.2701 35.2108

By observing Table 2, one can notice that the proposed algorithm (SQNRAD) satisfies
the G.712 Recommendation, by using 6 bits per sample for coding, as it provides SQNR
greater than 34 dB (ITU-T, 2001), for all values of compression factor implemented. Ad-
ditionally, the proposed algorithm provides gain in SQNR from 11.1 to about 12.36 dB,
when compared to PCM. We should point out that PCM uses fixed compression factor,
equal to 255, so SQNR in the column has a single value. The constant gain in SQNR of
more than 10 dB, compared to the widely used PCM, confirms that the proposed coding
algorithm provides high quality output speech signal. The version of the differential al-
gorithm without implementing adaptive quantization provides lower objective quality of
the output signal, for all values of the compression factor used (SQNRNON-AD). When we
use smaller compression factors, the non-adaptive quantizer is not suitable for applica-
tion, while for the adaptive version of the algorithm it provides approximately constant
performance for different compression factor values. In the case of using compression
factor equal to 255, the gain in SQNR is close to 14 dB in favour of the proposed differen-
tial speech coding algorithm with adaptive quantization, when compared to non-adaptive
version, while the gain amounts to about 11 dB, in comparison to the PCM.

Furthermore,we can compare our results with the results obtained in earlier researches,
by using similar or greater complexity coding schemes, where some of them also com-
ply with the G.712 Recommendation. Table 3 shows the comparative results obtained by
implementing DPCM with uniform quantization and the second order predictor (Suma,
2012), providing SQNR of about 30 dB, while using 6 bits per sample. One can notice that
the proposed algorithm provides gain in SQNR of about 6.5 dB, compared to the case of
implementing the basic DPCM coding scheme for the same bit rate. This gain is somewhat
justified by the more suitable design of our quantizer. It is also justified by the fact that
we have processed the wideband speech signal, which is more correlated compared to the
narrowband speech signal processed in Suma (2012). Additionally, Table 3 shows the per-
formance of the fixed and adaptive companding quantizer with variable-length codeword
(Perić et al., 2013c) and transform coding with forward adaptive quantization (Tancic et

al., 2016). In both cases, SQNR obtained is greater than 34 dB, while it is achieved by us-
ing around 6.5 bits per sample. The algorithm proposed in this paper overreaches SQNR
of the compared coding schemes by using around 0.5 bits per sample less for coding. We
can easily estimate the performanceof the proposed algorithm for the case of using 6.5 bits
per sample. This could be done by obtaining the SQNR performance for the case of using
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Table 3
Comparative SQNR performance of coding schemes which comply with the G. 712 Recommendation.

Bit ratea SQNRa Bit rateb SQNRb Bit ratec SQNRc Bit rate SQNRAD
[dB] [dB] [dB] (proposed) [dB] (proposed)

6 30 6.5 35.143 6.52 34.603 6 36.46

a Suma (2012), b Perić et al. (2013c), b Tancic et al. (2016).

7 bits per sample and by finding the mean value of this value and the one obtained in the
case of using 6 bits per sample from Table 3. The estimated SQNR performance of the
proposed algorithm for 6.5 bits per sample amounts to about 39.51 dB. This shows that in
the case of using the same bit rate, the proposed algorithm provides gain in SQNR from
4.3 dB to 4.9 dB, when compared to the aforementioned coding schemes.

The experimental results of applying the proposed algorithm to a real speech signal
and comparative results shown in Tables 2 and 3, confirm the suitability of the proposed
algorithm to be implemented in speech signal coding.

6. Conclusion

This paper has presented a simple, differential wideband speech signal coding algorithm,
with the implementation of backward adaptation technique. The algorithm implements
low complexity signal coding techniques and provides high quality output speech sig-
nal, while using low bit rate. By implementing differential coding, instead of common
waveform coding of input signal samples, we perform quantization on the difference sig-
nal, which has lower amplitude dynamics and, as shown, is more suitable for performing
quantization. The difference signal has been quantized by the backward adaptive quasilog-
arithmic quantizer, whose design has been presented in this paper. By inspecting the the-
oretical performance of the quasilogarithmic quantizer, we have demonstrated the advan-
tages of modelling the input signal with Gaussian distribution, since in that case SQNR
overreaches the results of using Laplacian distribution to model the input signal. The ex-
perimental results have shown the benefits of implementing adaptive quantization and
differential speech coding. Moreover, the experimental results have shown that the pro-
posed algorithm can satisfy the G. 712 Recommendation for high-quality speech coding,
in the case of using 6 bits per sample for coding. Comparative results of the proposed al-
gorithm with similar complexity speech coding schemes have confirmed that the proposed
algorithm can be successfully implemented in speech signal coding.
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