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Abstract. The main contributions of this paper are shown as: (1) we define dual hesitant fuzzy

t-norms and t-conorms; (2) based on dual hesitant fuzzy t-norms and t-conorms, we introduce

a family of prioritized dual hesitant fuzzy operators to aggregate dual hesitant fuzzy information

of alternatives with regard to the prioritized attributes; (3) we propose a method to handle the dual

hesitant fuzzy multi-attribute decision making (MADM) problems with prioritized attributes; (4) we

show that compared to other relevant studies, the developed prioritized aggregation operators take

full advantage of the given decision information, avoid the loss of original information, and thus

yield better final decision results.

Key words: multi-attribute decision making, prioritization relationship, dual hesitant fuzzy t-norm,
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1. Introduction

In decision making, uncertainty is ubiquitous since objective things are uncertain and

complex, and the managing and modelling of uncertain information are crucial for

the acquisition of desirable solutions (Xu and Zhao, 2016). To date, a large number

of tools have been proposed to model people’s imprecise decision information from

different angles (Atanassov, 1986; Torra, 2010; Zhu et al., 2012; Zhou et al., 2013;

Pang et al., 2016; Guan et al., 2017; Gou et al., 2017; Liao et al., 2017; Zhang, 2017;

Zhao et al., 2018). Among them, to fully reflect the characteristics of affirmation and nega-

tion of human’s cognitive performance, Atanassov (1986) introduced intuitionistic fuzzy

sets (IFSs), which assign to each element a membership degree and a non-membership

degree. In order to portray the human’s hesitancy in the decision-making process, Torra
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(2010) introduced hesitant fuzzy sets (HFSs), which allocate to each element several dif-

ferent membership degrees. Afterwards, motivated by the ideas of IFSs and HFSs, Zhu et

al. (2012) developed dual hesitant fuzzy sets (DHFSs) to manipulate the hesitation both

for the membership degree and the non-membership degree by two functions from which

two sets of membership and non-membership degrees can be respectively derived for each

element. Obviously, DHFSs are able to express the human’s hesitancy in more detail and

more comprehensively than IFSs and HFSs, and cover IFSs and HFSs as special cases.

DHFSs are very suitable for group deciding making as they can well handle the situations

where a decision organization consisting of several experts is not sure about a value, but

hesitant among several possible values when it provides the membership degree or the

non-membership degree of an element.

At present, the studies on theory and application of DHFSs have attracted great atten-

tion, and a lot of research results have been achieved (Farhadinia, 2014; Ju et al., 2014b;

Li, 2014; Singh, 2014; Zhu and Xu, 2014; Zhao et al., 2016; Ren et al., 2017). Since

the aggregation operators are very important for the application of DHFSs in decision

making, many scholars have studied the aggregation operators of dual hesitant fuzzy in-

formation. Wang et al. (2014) and Yu et al. (2016) developed some fundamental dual

hesitant fuzzy aggregation operators in terms of arithmetic and geometric operations. Af-

terwards, Yu (2014) and Wang and Li (2014) extended these aggregation operators (Wang

et al., 2014), and presented a family of generalized dual hesitant fuzzy aggregation oper-

ators. Based on Hamacher t-norm and t-conorm, Einstein t-conorm and t-norm, Ju et al.

(2014b) and Zhao et al. (2017) developed a series of new dual hesitant fuzzy aggregation

operators, respectively. For fusing the correlative dual hesitant fuzzy information, Ju et al.

(2014a) developed some dual hesitant fuzzy Choquet aggregation operators; Wang et al.

(2016) proposed a wide range of dual hesitant fuzzy power aggregation operators based

on Archimedean t-conorm and t-norm; Zhang (2015) proposed the dual hesitant fuzzy

Hamacher correlated geometric operator. In addition, considering that there may exist

some interactions between the membership functions and the non-membership functions

of different DHFSs, Xu et al. (2015) presented a class of dual hesitant fuzzy interaction op-

erators. Analysing the above-mentioned dual hesitant fuzzy aggregation operators, we can

find that these operators are all defined under the assumption that all attributes are at the

same priority level. However, in many practical multi-attribute decision making (MADM)

problems, the attributes are in different priority levels. For instance, a consumer who is

unfamiliar with cars is selecting a car from five candidate cars. Due to his/her ignorance

of cars, he/she invites three friends who are proficient in cars to evaluate these cars by

some indices among which safety level and comfort level are important. Generally, the

safety attribute has a higher priority than comfort, which is to say, it is not allowed to

compensate a loss in safety by a benefit in comfort. When evaluating the safety level of a

car, one of his/her friends thinks that its satisfaction degree is 0.5, while the others believe

that it should be 0.7, and they can’t persuade each other. Meanwhile, one of his/her friends

deems the dissatisfaction degree of safety as 0.1, another views it as 0.2, and the other con-

siders it as 0.3, and they all strongly insist on their own opinions. Then the above problem

is a dual hesitant fuzzy MADM problem with prioritized attributes, and the evaluation
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for safety level of the car can be represented by the dual hesitant fuzzy element (DHFE)

{{0.5,0.7}, {0.1,0.2,0.3}}.

The MADM problem with prioritized attributes is an interesting and hot research topic

and has received great attention from scholars. For example, Yager (2008, 2009) first in-

vestigated the MADM problems with prioritized attributes, and proposed the prioritized

averaging (PA) operator and prioritized ordered weighted average (POWA) operator, in

which the weight of an attribute with lower priority is dependent upon the satisfactions of

the higher priority attributes. After that, Yu and Xu (2013) generalized the PA operator

(Yager, 2008) to the intuitionistic fuzzy environment and developed several prioritized in-

tuitionistic fuzzy aggregation (PIFA) operators in light of some basic intuitionistic fuzzy

operations. Based on the POWA operator (Yager, 2009), Xu et al. (2011) proposed the

intuitionistic fuzzy POWA operator. Yu (2012) formulated the generalized intuitionistic

fuzzy prioritized weighted geometric operator based on Archimedean t-conorm and t-

norm. Wei (2012) extended the prioritized operators (Yager, 2008) to the hesitant fuzzy

environment and developed some hesitant fuzzy prioritized operators. Yu et al. (2013)

generalized Wei (2012)’s prioritized operators and presented some generalized hesitant

fuzzy prioritized operators. Zhou and Li (2014) developed two generalized hesitant fuzzy

prioritized Einstein operators with the help of Einstein operations. By means of the soft-

max function, Torres et al. (2014) developed the hesitant fuzzy prioritized softmax av-

erage and hesitant fuzzy prioritized softmax geometric operators. Recently, based on a

correctional score function and a dice similarity measure of DHFEs, Ren and Wei (2017)

developed a method to solve the decision making problems in which there exists a priori-

tization relationship over attributes and the attribute values take the form of DHFEs.

It is worth pointing out that when we apply the PIFA operators (Yu and Xu, 2013)

to solve the intuitionistic fuzzy MADM problems with prioritized attributes, the PIFA

operators may not capture the prioritization relationship over attributes since there may

exist compensation between attributes (for details, please refer to Section 5.1). Further-

more, in the process of generating weights for attributes (Yu and Xu, 2013; Xu et al., 2011;

Yu, 2012; Wei, 2012; Yu et al., 2013; Zhou and Li, 2014; Torres et al., 2014; Ren and Wei,

2017), the concept of score function is used to transform the original decision information

into single real numbers, which leads to distortion and loss of information, and further re-

sults in inaccurate decision results (for details, please refer to Section 5.1). Consequently,

it is very necessary to develop new prioritized aggregation operators. Since both IFSs

and HFSs are special cases of DHFSs, we just need to investigate the aggregation of dual

hesitant fuzzy information in the MADM problems with prioritized attributes. Therefore,

the main objective of this paper is to develop a family of prioritized dual hesitant fuzzy

aggregation operators based on t-norms and t-conorms and explore their applications in

the dual hesitant fuzzy MADM problems with prioritized attributes.

To do so, we organize the paper as follows: Section 2 reviews some basic knowledge

that will be used in our work. In Section 3, we define dual hesitant fuzzy t-norm and t-

conorm and survey a special class of DHF t-norms and t-conorms. In Section 4, based on

dual hesitant fuzzy t-norms and t-conorms, we first develop the prioritized dual hesitant

fuzzy weighted triangular operator, which preserves both the monotonicity and boundary
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conditions, and from which a family of prioritized dual hesitant fuzzy aggregation opera-

tors can be derived. Then, based upon the developed prioritized dual hesitant fuzzy aggre-

gation operators, we propose a method to handle the dual hesitant fuzzy MADM problems

with prioritized attributes and demonstrate the feasibility and applicability through a car

selection example. In Section 5, two comparisons are implemented to illustrate the valid-

ity and superiority of the developed prioritized aggregation operators and the proposed

decision making method. Section 6 ends the paper with some conclusions.

2. Preliminaries

In this section, we review some preliminary knowledge that will be used thereinafter.

Definition 1 (See Batyrshin and Kaynak, 1999; Klement et al., 2000). A t-norm T is a

mapping from [0,1]2 to [0,1] possessing the properties of commutativity and associativ-

ity, which is increasing in both arguments and refers to 1 as identity, i.e. T (1, a) = a for

a ∈ [0,1].

A t-conorm S from [0,1]2 to [0,1] has the similar properties with the t-norm T . The

only difference is that the t-conorm S regards 0 as identity, i.e. S(0, a) = a for a ∈ [0,1]

(Alsina et al., 1983; Nguyen and Walker, 2005).

Some typical examples of t-norms and t-conorms are shown as follows (Kolesárová

and Komorníková, 1999; Kolesárová et al., 2007) (∀a, b ∈ [0,1]):

(i) TM(a, b) = min(a, b) = a ∧ b; TP (a, b) = a · b; TL(a, b) = max(a + b − 1,0);

(ii) SM (a, b) = max(a, b) = a ∨ b; SS(a, b) = a + b − ab; SL(a, b) = min(a + b,1).

It can be easily validated that for any t-norm T , it holds that T (0, a) = 0 and T (a, b)6

TM(a, b); for any t-conorm S, we have S(1, a) = 1 and SM (a, b)6 S(a, b), where a, b ∈

[0,1].

Atanassov (1986) first proposed the notion of intuitionistic fuzzy sets as follows:

Definition 2 (See Atanassov, 1986). Let X be a fixed set, then an intuitionistic fuzzy set

(IFS) I on X is defined as:

I =
{〈

x,uI (x), vI (x)
〉∣

∣x ∈ X
}

,

where the functions uI : X → [0,1] and vI : X → [0,1] ascertain the membership de-

gree and non-membership degree of the element x ∈ X to the set I , respectively, with

the condition: uI (x) + vI (x) 6 1. For convenience, Xu (2007) called α = (uα, vα) an

intuitionistic fuzzy number (IFN).

Some operations on IFNs are presented as follows:

Definition 3 (See Xu, 2007). Let αi = (uαi , vαi ), i = 1,2 be two IFNs, then

(i) α1 ∧ α2 = (uα1
∧ uα2

, vα1
∨ vα2

);
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(ii) α1 ∨ α2 = (uα1
∨ uα2

, vα1
∧ vα2

);

(iii) α1 ⊕ α2 = (uα1
+ uα2

− uα1
uα2

, vα1
vα2

);

(iv) α1 ⊗ α2 = (uα1
uα2

, vα1
+ vα2

− vα1
vα2

).

However, there exist some cases in which the difficulty of determining the membership

degree of an element is not because we have a margin of error (IFSs), but because we have

several possible values. In order to cope with such cases, Torra (2010) put forward the

notion of hesitant fuzzy sets.

Definition 4 (See Torra, 2010). Let X be a fixed set, then a hesitant fuzzy set (HFS) on

X is in terms of a function which applied to X returns a subset of [0,1].

To be easily understood, Xia and Xu (2011) mathematically interpreted the HFS as:

E =
{〈

x,hE(x)
〉∣

∣x ∈ X
}

,

where hE(x) is a set of several values in [0,1], representing the possible membership

degrees of the element x ∈ X to the set E. For convenience, Xia and Xu (2011) called

h = hE(x) a hesitant fuzzy element (HFE).

Assumption. As pointed out in Bedregal et al. (2014), although the membership of an

HFS could be any subset of [0,1], practical works always assume explicitly or implicitly

that the membership of an HFS is a finite and non-empty subset. Bedregal et al. (2014)

defined the HFSs whose memberships are finite and non-empty subsets of [0,1] as the

typical HFSs, and the elements in the typical HFSs as the typical HFEs. From now on,

the paper will only pay attention to the typical HFEs. For notational convenience, we still

adopt the HFEs to denote the typical HFEs.

Meanwhile, Xia and Xu (2011) developed the following method to compare HFEs.

Definition 5 (See Xia and Xu, 2011). For an HFE h, q(h) = (1/#h)
∑

γi∈h γi is defined

as the score function of h, where #h denotes the number of elements in h. Then for two

HFEs h1 and h2, if q(h1) > q(h2), then h1 is superior to h2, denoted by h1 ≻ h2; if

q(h1) = q(h2), then h1 is indifferent to h2, denoted by h1 ∼ h2.

Recently, inspired by the ideas of IFSs and HFSs, Zhu et al. (2012) introduced dual

hesitant fuzzy sets, which allow the membership and non-membership degrees of an ele-

ment to a given set to be several different values in [0,1], respectively.

Definition 6 (See Zhu et al., 2012). Let X be a fixed set, then a dual hesitant fuzzy set

(DHFS) A on X is given in the following form:

A =
{〈

x,hA(x), gA(x)
〉∣

∣x ∈ X
}

,
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where hA(x) and gA(x) are two sets of several values in [0,1], indicating the possible

membership and non-membership degrees of the element x ∈ X to the set A, respectively,

with the condition: maxγ∈hA(x){γ } + maxη∈gA(x){η}6 1 for all x ∈ X.

Zhu et al. (2012) called the component d(x) = (hA(x), gA(x)) a dual hesitant fuzzy

element (DHFE), denoted by d = (h, g). Apparently, for the DHFE d = (h, g), if #h =

#g = 1 (#h and #g denote the numbers of elements in h and g, respectively), then d is

simplified to an IFN; if h 6= φ and g = φ (φ denotes the null set), then d is simplified

to an HFE. In addition, when h 6= φ and g 6= φ, the complement of d is given by dc =

(g,h) (Zhu et al., 2012). Since DHFEs are the basic units of a DHFS, for the purpose of

simplicity, we thereinafter will only focus on the DHFEs.

For convenience, we give the following two definitions:

Definition 7. Let d = (h, g) be a DHFE, then h and g are respectively called the mem-

bership degree set and non-membership degree set of d , and the numbers of elements in

h and g are respectively denoted by #h and #g.

Definition 8. For any subset v of [0,1], a permutation is defined by the mapping σv :

{1,2, . . . ,#v} → v such that for any t = 1,2, . . . ,#v − 1, we have σv(t) < σv(t + 1), i.e.

σv(t) is the t th smallest element in v, where #v denotes the number of elements in v.

Farhadinia (2014) proposed a linear order to implement the comparison of two DHFEs

under the assumption that the DHFEs have the same numbers of membership degrees and

non-membership degrees, respectively.

Definition 9 (See Farhadinia, 2014). Let di = (hi, gi), i = 1,2 be two DHFEs, then a

linear order �L is defined as:

d1 �L d2 iff d+
1

< d+
2

or (d+
1

= d+
2

and d−
1
6 d−

2
),

where d+
i = Score(hi) + Score(gi) and d−

i = |Score(hi) − Score(gi)| for i = 1,2. Here,

the score of a set v as a subset of [0,1] is given by

Score(v) =
2

#v(#v + 1)

#v
∑

t=1

tσv(t). (1)

Below we show the above comparison method through an example:

Example 1. Let d1 = {{0.1,0.2}, {0.5,0.8}} and d2 = {{0.1,0.4}, {0.4,0.6}} be two

DHFEs. Clearly, d1 should be inferior to d2 from intuition. By Eq. (1), we get Score(h1) =

0.1667, Score(g1) = 0.7, and Score(h2) = 0.3, Score(g2) = 0.5333. Then we get d+
2

=

0.8333 < 0.8667 = d+
1

, which indicates that d2 �L d1. It is obvious that the comparative

result is counterintuitive.
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For comparing two DHFEs effectively, motivated by the comparison method for IFNs

(Xu and Yager, 2006), we adjust the comparison principle in Definition 9 as:

Definition 10. Let di = (hi , gi), i = 1,2 be two DHFEs, d◦
i = Score(hi)− Score(gi) be

the score function of di , and d∗
i = Score(hi) + Score(gi) be the accuracy function of di ,

then we define

(i) if d◦
1

< d◦
2
, then d1 is inferior to d2, denoted by d1 ≺ d2;

(ii) if d◦
1

= d◦
2
, then

(1) if d∗
1

= d∗
2
, then d1 is indifferent to d2, denoted by d1 ∼ d2;

(2) if d∗
1

< d∗
2
, then d1 is inferior to d2, denoted by d1 ≺ d2.

For the DHFEs d1 and d2 in Example 1, we have d◦
1

= −0.5333 < −0.2333 = d◦
2
.

Thus, d1 is inferior to d2, which is in line with human’s intuition.

3. Dual Hesitant Fuzzy t-Norm and t-Conorm

The aim of this section is to define dual hesitant fuzzy t-norms and t-conorms and study

a special class of dual hesitant fuzzy t-norms and t-conorms in detail, which are very

helpful for the development of prioritized dual hesitant fuzzy aggregation operators.

From Definition 6, we know that for two different DHFEs, the numbers of membership

degrees (or non-membership degrees) may be different. Hence, a normalization process

should be considered. Inspired by the normalization method for HFEs (Xu and Xia, 2011),

below we normalize them by adding membership degrees (or non-membership degrees):

Definition 11. Assume that d = (h, g) is a DHFE, then h = (1 − τ )σh(1) + τσh(#h)

and g = τσg(1)+(1 − τ )σg(#g) are called the added membership and non-membership

degrees, respectively, where τ (0 6 τ 6 1) is a parameter provided by the decision maker

according to his/her risk preference.

Thus, for two DHFEs with different numbers of membership degrees (or non-

membership degrees), we may employ the parameter τ to normalize them such that they

have the same numberof membershipdegrees (or non-membershipdegrees). For example,

for two DHFEs d1 = {{0.1,0.2}, {0.4,0.5,0.6}} and d2 = {{0.2,0.3,0.4,0.6}, {0.3,0.4}},

it is obvious that #h1 < #h2 and #g2 < #g1. In Definition 11, let τ = 1, then in this

case, h1 = 0 × σh1
(1) + 1 × σh1

(#h1) = 0.2 and g2 = 1 × σg2
(1) + 0 × σg2

(#g2) =

0.3. Thus, we can extend d1 by adding 0.2 into its membership degree set h1 and ex-

tend d2 by adding 0.3 into its non-membership degree set g2. As a result, d1 becomes

{{0.1,0.2,0.2,0.2}, {0.4,0.5,0.6}} and d2 becomes {{0.2,0.3,0.4,0.6}, {0.3,0.3,0.4}}.

In general, the parameter τ is determined by the decision maker used to reflect his/her

risk attitude. Clearly, if τ = 1, then the largest membership degree and the smallest non-

membership degree are added, respectively, which means that the decision maker is opti-

mistic. For other cases, for example, τ = 0 indicates that the decision maker is pessimistic,
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and τ = 0.5 indicates that the decision maker is indifferent. In this paper, we only consider

the case in which the decision makers are optimists, and other cases can be studied in a

similar way.

For facilitating the definitions of dual hesitant fuzzy t-norms and t-conorms, a partial

order “6D” on the set of all DHFEs D is defined as follows:

Definition 12. Let di = (hi , gi), i = 1,2 be two DHFEs with #h1 = #h2 = k and #g1 =

#g2 = l, then a partial order between d1 and d2 is defined as:

d1 6D d2 iff σh1
(t) 6 σh2

(t) for any t = 1,2, . . . , k and

σg1
(t) > σg2

(t) for any t = 1,2, . . . , l.

Note 1. For two DHFEs with different numbers of membership degrees (or non-

membership degrees), the partial order “6D” is defined between their normalization forms

(see Definition 11).

Example 2. Consider two DHFEs d1 = {{0.5,0.6,0.8}, {0.1,0.2}} and d2 = {{0.4,0.6},

{0.2,0.3,0.4}}. Through normalization, d1 and d2 become d1 = {{0.5,0.6,0.8},

{0.1,0.1,0.2}} and d2 = {{0.4,0.6,0.6}, {0.2,0.3,0.4}}, respectively. Thus, by Defini-

tion 12, we get d2 6D d1.

For two DHFEs di = (hi, gi), i = 1,2 with #h1 = #h2 = k and #g1 = #g2 = l,

we define the meet-operation as d1 ∧ d2 = {{σh1
(t) ∧ σh2

(t)|t = 1,2, . . . , k}, {σg1
(t) ∨

σg2
(t)|t = 1,2, . . . , l}} and the joint-operation as d1 ∨ d2 = {{σh1

(t) ∨ σh2
(t)|t =

1,2, . . . , k}, {σg1
(t) ∧ σg2

(t)|t = 1,2, . . . , l}}. Then for any DHFE d , it can be easily de-

duced that d ∧ 0D = 0D and d ∨ 1D = 1D , where 0D = {{0}, {1}} and 1D = {{1}, {0}}.

Therefore, the set D with the partial order “6D” is a bounded lattice, denoted as (D,6D),

whose smallest and largest elements are 0D = {{0}, {1}} and 1D = {{1}, {0}}, respectively.

Now with the help of the bounded lattice (D,6D), we can straightforwardly extend

the definitions of t-norms and t-conorms to the dual hesitant fuzzy setting.

Definition 13. A dual hesitant fuzzy t-norm (DHF t-norm) is a mapping DT : D2 → D

having the following properties:

(i) Commutativity: DT (d1, d2) = DT (d2, d1);

(ii) Associativity: DT (d1,DT (d2, d3)) = DT (DT (d1, d2), d3);

(iii) Monotonicity: if d1 6D d3 and d2 6D d4, then DT (d1, d2) 6D DT (d3, d4);

(iv) 1D as identity: DT (1D, d1) = d1.

A dual hesitant fuzzy t-conorm (DHF t-conorm) is a mapping DS : D2 → D possess-

ing the following properties:

(i) Commutativity: DS(d1, d2) = DS(d2, d1);

(ii) Associativity: DS(d1,DS(d2, d3)) = DS(DS(d1, d2), d3);



Prioritized Dual Hesitant Fuzzy Aggregation Operators Based on t-Norms, t-Conorms 589

(iii) Monotonicity: if d1 6D d3 and d2 6D d4, then DS(d1, d2) 6D DS(d3, d4);

(iv) 0D as identity: DS(0D, d1) = d1,

where d1, d2, d3, d4 ∈ D.

The associativity property of DHF t-norms and t-conorms permits us to extend them

to any number of dual hesitant fuzzy arguments, i.e. given n DHFEs di , i = 1,2, . . . , n, we

have DT (d1, . . . , dn) = DT (DT (d1, . . . , dn−1), dn) and DS(d1, . . . , dn) = DS(DS(d1,

. . . , dn−1), dn). Besides, we get the notable properties: DT (d1, . . . , dn, dn+1) 6D

DT (d1, . . . , dn) and DS(d1, . . . , dn)6D DS(d1, . . . , dn, dn+1) for n > 2.

Let di = (hi, gi), i = 1,2 be two DHFEs with #h1 = #h2 = k and #g1 = #g2 = l, then

some typical examples of DHF t-norms are listed as follows:

1) Dual hesitant fuzzy minimum (DHFM) t-norm:

DTTM ,SM (d1, d2) = d1 ∧ d2

=
{{

σh1
(t) ∧ σh2

(t)
∣

∣t = 1,2, . . . , k
}

,
{

σg1
(t) ∨ σg2

(t)
∣

∣t = 1,2, . . . , l
}}

. (2)

2) Dual hesitant fuzzy product (DHFP) t-norm:

DTTP ,SS (d1, d2) = d1 ⊗ d2

=
{{

σh1
(t)σh2

(t)
∣

∣t = 1,2, . . . , k
}

,
{

σg1
(t) + σg2

(t) − σg1
(t)σg2

(t)
∣

∣t = 1,2, . . . , l
}}

. (3)

3) Dual hesitant fuzzy Lukasiewicz (DHFL) t-norm:

DTTL,SL(d1, d2) =
{{

(σh1
(t) + σh2

(t) − 1) ∨ 0
∣

∣t = 1,2, . . . , k
}

,
{

(σg1
(t) + σg2

(t)) ∧ 1
∣

∣t = 1,2, . . . , l
}}

. (4)

Three typical examples of DHF t-conorms are presented as follows:

1) Dual hesitant fuzzy maximum (DHFM) t-conorm:

DSSM ,TM (d1, d2) = d1 ∨ d2

=
{{

σh1
(t) ∨ σh2

(t)
∣

∣t = 1,2, . . . , k
}

,
{

σg1
(t) ∧ σg2

(t)
∣

∣t = 1,2, . . . , l
}}

. (5)

2) Dual hesitant fuzzy probabilistic sum (DHFPS) t-conorm:

DSSS ,TP (d1, d2) = d1 ⊕ d2

=
{{

σh1
(t) + σh2

(t) − σh1
(t)σh2

(t)
∣

∣t = 1,2, . . . , k
}

,
{

σg1
(t)σg2

(t)
∣

∣t = 1,2, . . . , l
}}

. (6)
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3) Dual hesitant fuzzy Lukasiewicz (DHFL) t-conorm:

DSSL,TL(d1, d2) =
{{

(σh1
(t) + σh2

(t)) ∧ 1
∣

∣t = 1,2, . . . , k
}

,
{

(σg1
(t) + σg2

(t) − 1) ∨ 0
∣

∣t = 1,2, . . . , l
}}

. (7)

Note 2. The above-mentioned dual hesitant fuzzy t-norms and t-conorms are all defined

on two DHFEs with the same number of membership degrees and the same number of

non-membership degrees. For two DHFEs with different numbers of membership degrees

(or non-membership degrees), we may define dual hesitant fuzzy t-norms and t-conorms

on their normalization forms (see Definition 11).

To date, we have introduced the definitions of DHF t-norms and t-conorms, which are

consistent with those of traditional t-norms and t-conorms (similar work can be found

in Deschrijver et al., 2004; Dimuro et al., 2011). In what follows, we research a special

class of DHF t-norms and t-conorms, which are constructed by traditional t-norms and t-

conorms and will play a crucial role in the development of prioritized dual hesitant fuzzy

aggregation operators.

Theorem 1. Let T ,S : [0,1]2 → [0,1] be a t-norm and a t-conorm, respectively, such

that T (x, y) + S(1 − x,1 − y)6 1 for x, y ∈ [0,1]. Then the mapping DT defined by

DTT ,S(d1, d2) =
{{

T (σh1
(t), σh2

(t))
∣

∣t = 1,2, . . . , k
}

,
{

S(σg1
(t), σg2

(t))
∣

∣t = 1,2, . . . , l
}}

(8)

is a DHF t-norm, and the mapping DS defined by

DSS,T (d1, d2) =
{{

S(σh1
(t), σh2

(t))
∣

∣t = 1,2, . . . , k
}

,
{

T (σg1
(t), σg2

(t))
∣

∣t = 1,2, . . . , l
}}

(9)

is a DHF t-conorm, where di = (hi, gi) ∈ D, i = 1,2 with #h1 = #h2 = k and #g1 =

#g2 = l.

Theorem 1 can be easily proven by the definitions of t-norms and t-conorms. Ob-

viously, the DHF t-norms and t-conorms respectively presented by Eqs. (2)–(4) and

Eqs. (5)–(6) can be formed through Theorem 1.

Property 1. Let DTT , S and DSS,T be a DHF t-norm and t-conorm constructed through

Theorem 1, respectively, then for any two DHFEs di , i = 1,2, we have

(i) DTT ,S(0D, d1) = 0D and DSS, T (1D, d1) = 1D;

(ii) if for i = 1,2, di = (hi, gi) with hi 6= φ and gi 6= φ, then (DTT , S(d1, d2))
c =

DSS,T (dc
1
, dc

2
) and (DSS,T (d1, d2))

c = DTT ,S(dc
1
, dc

2
);
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(iii) DTT ,S(d1, d2) 6D DTTM ,SM (d1, d2) and DSSM ,TM (d1, d2) 6D DSS,T (d1, d2),

i.e. DTTM ,SM is the largest DHF t-norm among all DTT ,S , and DSSM ,TM is the

smallest DHF t-conorm among all DSS,T .

Proof. (1) Since for any t-norm T and t-conorm S, it holds that T (0, a) = 0 and S(1, a) =

1 for a ∈ [0,1]. Then

DTT ,S(0D, d1) =
{{

T (0, σh1
(t))

∣

∣t = 1,2, . . . ,#h1

}

,
{

S(1, σg1
(t))

∣

∣t = 1,2, . . . ,#g1

}}

= 0D

and

DSS,T (1D, d1) =
{{

S(1, σh1
(t))

∣

∣t = 1,2, . . . ,#h1

}

,
{

T (0, σg1
(t))

∣

∣t = 1,2, . . . ,#g1

}}

= 1D

(2) (DTT ,S(d1, d2))
c =

({{

T (σh1
(t), σh2

(t))
∣

∣t = 1,2, . . . , k
}

,
{

S(σg1
(t), σg2

(t))
∣

∣t = 1,2, . . . , l}
})c

=
{{

S(σg1
(t), σg2

(t))
∣

∣t = 1,2, . . . , l
}

,
{

T (σh1
(t), σh2

(t))
∣

∣t = 1,2, . . . , k
}}

= DSS, T

(

dc
1
, dc

2

)

.

Similarly, it can be proven that (DSS, T (d1, d2))
c = DTT , S(dc

1
, dc

2
).

(3) Since for any t-norm T and t-conorm S, it holds that T (a, b) 6 TM(a, b)

and SM (a, b) 6 S(a, b) for a, b ∈ [0,1]. Then, T (σh1
(t), σh2

(t)) 6 σh1
(t) ∧ σh2

(t) for

t = 1,2, . . . , k, and S(σg1
(t), σg2

(t)) > σg1
(t) ∨ σg2

(t) for t = 1,2, . . . , l. Therefore,

DTT , S(d1, d2) 6D DTTM , SM (d1, d2). In a similar way, we prove DSSM , TM (d1, d2) 6D

DSS, T (d1, d2). �

4. Prioritized Dual Hesitant Fuzzy Multi-Attribute Decision Making

In this section, we focus on the resolution of dual hesitant fuzzy MADM problems in which

there exists a prioritization relationship over attributes. We first describe this kind of prob-

lems as follows: suppose that there are several attributes cj (j = 1,2, . . . ,m) according

to which a decision organization containing several experts assesses several feasible al-

ternatives xi (i = 1,2, . . . , n) by using the DHFEs dj (xi). Assume that there exists the

prioritization relationship over the attributes: c1 ≻ c2 ≻ · · · ≻ cm, i.e. the attribute cr has

a higher priority than the attribute cj if r < j . The goal of the decision maker is to get the

ranking of all feasible alternatives.

A simple method to solve the aforesaid dual hesitant fuzzy MADM problems with

prioritized attributes is to conduct an aggregation for the dual hesitant fuzzy evaluation

values of each alternative under all attributes to obtain a collective value, and then to com-

pare the collective values of all alternatives to obtain a ranking of alternatives. However,

from the introduction, we note that no studies have been done on the aggregation of dual

hesitant fuzzy information in the MADM problems with prioritized attributes. Therefore,
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below we attempt to develop prioritized dual hesitant fuzzy aggregation operators based

on the DHF t-norms and t-conorms defined in the former section.

4.1. The Prioritized Dual Hesitant Fuzzy Weighted Triangular Operator

In this subsection, we pay attention to the aggregation of dual hesitant fuzzy information

in the MADM problems where there exists a prioritization relationship over attributes.

Before that, we first introduce the following definition:

Definition 14. A dual hesitant fuzzy aggregation function (DHFAF) of dimension n is

a mapping DF : Dn → D with the following conditions:

(i) DF(0D,0D, . . . ,0D) = 0D and DF(1D,1D, . . . ,1D) = 1D;

(ii) DF(d1, d2, . . . , dn)6D DF(d
′

1
, d

′

2
, . . . , d

′

n) for di 6D d
′

i , i = 1,2, . . . , n.

The conditions (i) and (ii) can be interpreted as follows: the condition (i) indicates that

when the aggregated dual hesitant fuzzy arguments are all the smallest element 0D of the

lattice (D,6D), their aggregation result should be 0D; analogously, when the aggregated

dual hesitant fuzzy arguments are all the largest element 1D of the lattice (D,6D), the

obtained aggregation result should be 1D; the condition (ii) says that the aggregation result

should not decrease with the individual dual hesitant fuzzy argument increasing regarding

the partial order 6D , that is, an aggregation function on D should be non-decreasing in

relation to the aggregated dual hesitant fuzzy arguments.

It can be easily seen that DHF t-norms and t-conorms depicted in Theorem 1 are

binary DHFAFs. In the following, we develop another DHFAF for aggregating the dual

hesitant fuzzy information in the MADM problems with prioritized attributes. The key to

developing such a function is to determine the weights of attributes, by which the prioriti-

zation relationship over attributes can be reflected. For the alternative xi (i = 1,2, . . . , n),

based on the DHF t-norm DTT ,S (constructed through Theorem 1), we define the priority

weight of the attribute cj as:

wj (xi) =

{

1D, j = 1,

DTT , S(d0(xi), d1(xi), . . . , dj−1(xi)), j = 2,3, . . . ,m,
(10)

where d0(xi) = 1D . Then, based on the DHF t-norm DTT1,S1
and DHF t-conorm

DSS2,T2
(constructed through Theorem 1), we define the prioritized dual hesitant fuzzy

weighted triangular (PDHFWT) operator as:

F(xi) = PDHFWTw(xi)

(

d1(xi), . . . , dm(xi)
)

= DSS2,T2

(

DTT1,S1

(

w1(xi), d1(xi)
)

, . . . ,DTT1,S1

(

wm(xi), dm(xi)
))

. (11)

From Eqs. (10) and (11), we can easily observe that: (i) the weights wj (xi) (i =

1,2, . . . , n, j = 1,2, . . . ,m) are all DHFEs; (ii) for i = 1,2, . . . , n, the weights wj (xi) are

non-increasing in j , i.e., wj (xi) 6D wr (xi) if r < j ; (iii) for i = 1,2, . . . , n, if d1(xi) =
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0D , then w1(xi) = 1D and wj (xi) = 0D for j > 1, and in this case, F(xi) = 0D , that is, for

any alternative xi , 0D satisfaction to the first prioritized attribute c1 always results in the

overall aggregation result F(xi) = 0D ; furthermore, if dj (xi) = 0D , then wr (xi) = 0D for

r > j , and F(xi) = DSS2,T2
(DTT1,S1

(w1(xi), d1(xi)), . . . ,DTT1,S1
(wj−1(xi), dj−1(xi))),

which illustrates that 0D satisfaction to some attribute cj leads to no contributions made

by the attributes with lower priority than cj to the overall aggregation result, that is, the

lack of satisfaction to the higher prioritized attributes cannot be compensated by satis-

faction to the lower prioritized attributes (i.e., the PDHFWT operator has the property of

non-compensation); (iv) for different alternatives xi and xk(k 6= i), the weights wj (xi)

and wj (xk) are usually different, that is, the yielded weights rely on the alternatives xi

(i = 1,2, . . . , n).

All the above say that the developed PDHFWT operator can well capture the prioriti-

zation relationship over attributes. Furthermore, we get:

Theorem 2. The PDHFWT operator is a DHFAF.

Theorem 2 is straightforward.

In Eqs. (10) and (11), when different DHF t-norms and t-conorms are employed, dif-

ferent forms of prioritized dual hesitant fuzzy aggregation operators can be obtained. A

specific one is shown as follows: assume that for the alternatives xi (i = 1,2, . . . , n),

dj (xi) = (hij , gij ) with #hij = ki and #gij = li for j = 1,2, . . . ,m. Let DTT ,S =

DTT1,S1
= DTTP ,SS , shown as Eq. (3), and DSS2,T2

= DSSS ,TP , shown as Eq. (6). Then

by Eq. (10), we obtain

wj (xi) = DTTP , SS (d0(xi), d1(xi), . . . , dj−1(xi))

=

{

{ j−1
∏

r=1

σhir (t)
∣

∣t = 1,2, . . . , ki

}

,

{

1 −

j−1
∏

r=1

(

1 − σgir (t)
)∣

∣t = 1,2, . . . , li

}

}

(12)

for j = 2,3, . . . ,m. Moreover, by Eq. (11), we acquire

F(xi) = DSSS ,TP

(

DTTP ,SS (w1(xi), d1(xi)), . . . ,DTTP , SS

(

wm(xi), dm(xi)
))

=

{

{

1 −

m
∏

j=1

(

1 −

j
∏

r=1

σhir (t)

)

∣

∣t = 1,2, . . . , ki

}

,

{ m
∏

j=1

(

1 −

j
∏

r=1

(1 − σgir (t))

)

∣

∣t = 1,2, . . . , li

}

}

. (13)

We illustrate the developed PDHFWT operator by the following example:
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Example 3. Consider the prioritized attributes c1 ≻ c2 ≻ c3, and assume that for the alter-

native x the evaluation values under the attributes cj (j = 1,2,3) provided by a decision

organization are DHFEs:

d1(x) =
{

{0.4,0.6}, {0.1,0.3,0.4}
}

, d2(x) =
{

{0.5}, {0.2,0.5}
}

,

d3(x) =
{

{0.5,0.7}, {0.2}
}

.

Firstly, by Eq. (12), the priority weights wj (x) of the attributes cj (j = 1,2,3) can be

calculated:

w1(x) =
{

{1}, {0}
}

, w2(x) =
{

{0.4,0.6}, {0.1,0.3,0.4}
}

,

w3(x) =
{

{0.2,0.3}, {0.28,0.44,0.7}
}

.

Evidently, w3(x)6D w2(x)6D w1(x), which accords with the prioritization relationship

over the three attributes.

Then, by Eq. (13), we obtain the overall attribute value of the alternative x , shown as:

F(x) =
{

{0.568,0.7788}, {0.0119,0.0729,0.2128}
}

.

Since the DHFS is a generalization of the IFS and the HFS, below we apply the de-

veloped PDHFWT operator shown in Eqs. (12) and (13) to the intuitionistic fuzzy and

hesitant fuzzy environments.

In the intuitionistic fuzzy context, by Eq. (12), the priority weight of the attribute cj

regarding the alternative xi is given as:

wj (xi) =

( j−1
∏

r=1

uir ,1 −

j−1
∏

r=1

(1 − vir )

)

, for j = 2,3, . . . ,m, (14)

where w1(xi) = (1,0), and αj (xi) = (uij , vij ) is an IFN representing the attribute value of

the alternative xi under the attribute cj . Then, by Eq. (13), we get the following prioritized

intuitionistic fuzzy weighted triangular (PIFWT) operator:

α(xi) = PIFWTw(xi)

(

α1(xi), α2(xi), . . . , αm(xi)
)

=

(

1 −

m
∏

j=1

(

1 −

j
∏

r=1

uir

)

,

m
∏

j=1

(

1 −

j
∏

r=1

(1 − vir )

)

)

. (15)

In the hesitant fuzzy context, by Eq. (12), the priority weight of the attribute cj with

respect to the alternative xi is given as:

wj (xi) =

{ j−1
∏

r=1

σhir (t)
∣

∣t = 1,2, . . . , ki

}

, for j = 2,3, . . . ,m, (16)
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Table 1

Dual hesitant fuzzy attribute values.

c1 c2 c3 c4 c5 c6

x1 {{0.5,0.7}, {0.1,0.2,0.3}} {{0.3,0.5,0.6}, {0.2,0.4}} {{0.1,0.2}, {0.5,0.6}} {{0.8,0.9}, {0.1}} {{0.6,0.8}, {0.1,0.2}} {{0.1,0.3}, {0.5,0.7}}
x2 {{0.4}, {0.2,0.3}} {{0.6,0.7}, {0.1}} {{0.6,0.7,0.8}, {0.1,0.2}} {{0.5,0.7}, {0.1}} {{0.5,0.6,0.7}, {0.1,0.2}} {{0.2}, {0.6,0.7}}
x3 {{0.3,0.4}, {0.1,0.2}} {{0.6,0.8}, {0.1}} {{0.4,0.6}, {0.4}} {{0.6,0.7}, {0.2,0.3}} {{0.8,0.9}, {0.1}} {{0.4,0.6}, {0.3,0.4}}
x4 {{0.6,0.7}, {0.1,0.2}} {{0.6,0.8}, {0.1}} {{0.2,0.3}, {0.4,0.6}} {{0.7,0.8}, {0.2}} {{0.4,0.5,0.6}, {0.4}} {{0.1,0.2}, {0.4,0.5}}
x5 {{0.4,0.5}, {0.3}} {{0.4,0.6}, {0.1,0.2,0.3}} {{0.5,0.6}, {0.2,0.4}} {{0.8,0.9}, {0.1}} {{0.4}, {0.5,0.6}} {{0.6,0.7}, {0.3}}

where w1(xi) = {1}, hj (xi) = {σhij (t)|t = 1,2, . . . , ki} is a HFE representing the possible

attribute values of the alternative xi under the attribute cj . Then, by Eq. (13), we obtain

the following prioritized hesitant fuzzy weighted triangular (PHFWT) operator:

h(xi) = PHFWTw(xi)

(

h1(xi), h2(xi), . . . , hm(xi)
)

=

{

1 −

m
∏

j=1

(

1 −

j
∏

r=1

σhir (t)

)

∣

∣

∣t = 1,2, . . . , ki

}

. (17)

4.2. A Method to Solve Dual Hesitant Fuzzy MADM Problems with Prioritized

Attributes

In the previous section, we have developed the PDHFWT operator by using the DHF

t-norms and t-conorms, which manages to capture the prioritization relationship over at-

tributes, and proved that it is essentially a DHFAF, which indicates that the PDHFWT

operator can be applied to aggregate the dual hesitant fuzzy information in MADM prob-

lems. Based on the PDHFWT operator, we here provide a method to handle the dual hes-

itant fuzzy MADM problems with prioritized attributes, whose procedures are presented

as follows:

Step 1. For the alternatives xi (i = 1,2, . . . , n), we calculate the priority weights

wj (xi) (i = 1,2, . . . , n, j = 1,2, . . . ,m) of the attributes cj (j = 1,2, . . . ,m)

by Eq. (12).

Step 2. By Eq. (13), we calculate the overall attribute values F(xi) (i = 1,2, . . . , n)

of alternatives xi (i = 1,2, . . . , n).

Step 3. Rank F(xi), i = 1,2, . . . , n, according to Definition 10, and then the corre-

sponding ranking orders of alternatives xi (i = 1,2, . . . , n) can be obtained.

Example 4 (See Yu and Xu, 2013). Assume that a consumer wants to buy a new car from

five cars x1, x2, . . . , x5. Since he/she has poor understanding about cars, he/she invites

three friends who are proficient in cars to assess these cars by considering six attributes:

1) safety level c1; 2) price c2; 3) fuel consumption c3; 4) comfort level c4; 5) maximum gas

mileage c5; 6) fashion c6. In the consumer’s opinion, there exists the prioritization rela-

tionship among these attributes: c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5 ≻ c6. Suppose that the assessment

values dj (xi) of cars xi (i = 1,2, . . . ,5) with regard to the attributes cj (j = 1,2, . . . ,6)

provided by the three friends can be represented by DHFEs, see Table 1.

Obviously, the above problem is a dual hesitant fuzzy MADM problem with prioritized

attributes. In the following, we adopt the proposed method to solve it.
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Table 2

Dual hesitant fuzzy priority weights of first three attributes.

w1 w2 w3

x1 {{1}, {0}} {{0.5,0.7}, {0.1,0.2,0.3}} {{0.15,0.35,0.42}, {0.28,0.36,0.58}}

x2 {{1}, {0}} {{0.4}, {0.2,0.3}} {{0.24,0.28}, {0.28,0.37}}

x3 {{1}, {0}} {{0.3,0.4}, {0.1,0.2}} {{0.18,0.32}, {0.19,0.28}}

x4 {{1}, {0}} {{0.6,0.7}, {0.1,0.2}} {{0.36,0.56}, {0.19,0.28}}

x5 {{1}, {0}} {{0.4,0.5}, {0.3}} {{0.16,0.3}, {0.37,0.44,0.51}}

Table 3

Dual hesitant fuzzy priority weights of last three attributes.

w4 w5 w6

x1 {{0.015,0.07,0.084}, {0.64, 0.68, 0.832}} {{0.012,0.063,0.0756}, {0.676, 0.712,0.8488}} {{0.0072,0.0504,0.0605}, {0.7084,0.7408,0.8791}}
x2 {{0.144,0.196,0.224}, {0.424, 0.559}} {{0.072,0.1372,0.1568}, {0.4816, 0.6031}} {{0.036,0.0823,0.1098}, {0.5334,0.6825}}
x3 {{0.072,0.192}, {0.514,0.568}} {{0.0432,0.1344}, {0.6112,0.6976}} {{0.0346,0.1209}, {0.6501,0.7278}}
x4 {{0.072,0.168}, {0.514,0.712}} {{0.0504,0.1344}, {0.6112,0.7696}} {{0.0202,0.0672,0.0806}, {0.7667,0.8618}}
x5 {{0.08,0.18}, {0.496,0.552, 0.706}} {{0.064,0.162}, {0.5464,0.5968,0.7354}} {{0.0256,0.0648}, {0.7732,0.7984,0.8942}}

Firstly, by Eq. (12), we calculate the priority weights wj (xi) of the attributes cj (j =

1,2, . . . ,6) for the cars xi (i = 1,2, . . . ,5), see Tables 2 and 3. Then, by Eq. (13), the

overall attribute values of the cars xi (i = 1,2, . . . ,5) are calculated, shown as:

F(x1) =
{

{0.5897,0.8411,0.8641}, {0.0073,0.0225,0.1041}
}

,

F (x2) =
{

{0.6533,0.7295,0.7539}, {0.0049,0.0231}
}

,

F (x3) =
{

{0.5148,0.7674}, {0.0029,0.0135}
}

,

F (x4) =
{

{0.7794,0.9125,0.914}, {0.0039,0.0246}
}

,

F (x5) =
{

{0.5836,0.7853}, {0.0196,0.0298,0.0658}
}

.

Finally, according to Definition 10, we obtain the scores of F(xi) (i = 1,2, . . . ,5), listed

as:

d◦
1

= 0.7499, d◦
2

= 0.715, d◦
3

= 0.7171, d◦
4

= 0.8768, d◦
5

= 0.4438,

from which we get the ranking orders of the five optional cars: x4 ≻ x1 ≻ x3 ≻ x2 ≻ x5,

where “≻” means “prefer to”. Therefore, the consumer should buy the fourth car x4.

It is not hard to find that in the above procedures the priority weights of attributes are

indeed induced by the DHFP t-norm, shown as Eq. (3), and the overall attribute value of

each car is indeed derived from the DHFP t-norm and DHFPS t-conorm, shown as Eqs. (3)

and (6), respectively. Now we consider other DHF t-norms and t-conorms. Firstly, if we

adopt the DHFM t-norm and DHFL t-norm, shown as Eqs. (2) and (4), respectively, to

induce the priority weights of attributes, then by means of our proposed method, the score

of the obtained overall attribute value of each car xi can be computed, see Table 4.

Moreover, if we use the DHFM t-norm, DHFP t-norm, and DHFL t-norm, shown as

Eqs. (2)–(4), respectively, to generate the priority weights of attributes, and the DHFL
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Table 4

Scores and rankings of cars with different DHF t-norms inducing priority weights.

DHF t-norms Scores of cars Ranking orders

x1 x2 x3 x4 x5

DHFM t-norm 0.7901 0.8289 0.8041 0.8915 0.8606 x4 ≻ x5 ≻ x2 ≻ x3 ≻ x1

DHFP t-norm 0.7499 0.715 0.7171 0.8768 0.4438 x4 ≻ x1 ≻ x3 ≻ x2 ≻ x5

DHFL t-norm 0.6351 0.5581 0.5181 0.7995 0.5169 x4 ≻ x1 ≻ x2 ≻ x3 ≻ x5

Table 5

Scores and ranking orders of cars with different DHF t-norms inducing priority weights.

DHF t-norms Scores of cars Ranking orders

x1 x2 x3 x4 x5

DHFM t-norm 0.75 0.6667 0.7 0.9 0.8 x4 ≻ x5 ≻ x1 ≻ x3 ≻ x2

DHFP t-norm 0.8 0.4933 0.4672 0.9 0.54 x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3

DHFL t-norm 0.8 0.46 0.45 0.9 0.5 x4 ≻ x1 ≻ x5 ≻ x2 ≻ x3

t-norm and DHFL t-conorm, shown as Eqs. (4) and (7), to aggregate the attribute values,

then by our proposed method, the score of the obtained overall attribute value of each car

xi can be computed, see Table 5.

From Tables 4 and 5, it can be clearly seen that the car x4 is always the best choice

no matter which DHF t-norm is applied to generate the priority weights of attributes and

whichever DHF t-norm and t-conorm is adopted to aggregate the attribute values of cars.

However, the ranking orders of cars are different in different cases. On one hand, the rank-

ing orders of cars are different when different DHF t-norms are used to induce the priority

weights of attributes. On the other hand, different ranking orders of cars are generated

when different DHF t-norms and t-conorms are used to aggregate the attribute values.

All of these illustrate that different ranking orders of alternatives will be yielded when

different DHF t-norms are used to induce the priority weights of attributes or different

DHF t-norms and t-cornoms are adopted to aggregate the attribute values of alternatives.

Then two important questions arise: which DHF t-norm performs better in generating

priority weights, and which DHF t-norm and DHF t-conorm conduct better in aggregating

attribute values? Since the solving process is complicated, we will resolve these questions

in our future work.

5. Comparative Analyses and Discussions

In this section, two comparisons are conducted to illustrate the validity and superior-

ity of the developed prioritized aggregation operators and the proposed decision making

method.
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5.1. Comparative Studies of Prioritized Aggregation Operators

From the introduction, we note that no studies have been done on the aggregation of dual

hesitant fuzzy information in the MADM problems with prioritized attributes. Since IFSs

and HFSs are two special cases of DHFSs, below we compare the developed prioritized

aggregation operators with those in the intuitionistic fuzzy and hesitant fuzzy environ-

ments shown in Yu and Xu (2013), Wei (2012).

(1) A comparison with prioritized intuitionistic fuzzy aggregation operators

Based upon the basic operations of IFNs shown in Definition 3, Yu and Xu (2013)

developed the following two kinds of prioritized intuitionistic fuzzy aggregation (PIFA)

operators to manage the intuitionistic fuzzy MADM problems with prioritized attributes:

α(xi) =

m
∧

j=1

(

wj (xi) ∨ αj (xi)
)

, (18)

α(xi) =

m
⊗

j=1

(

wj (xi) ⊕ αj (xi)
)

, (19)

where αj (xi) is an IFN representing the attribute value of the alternative xi under the

attribute cj (j = 1,2, . . . ,m) and wj (xi) is the priority weight of the attribute cj regarding

the alternative xi defined by

wj (xi) = α0(xi) ⊗ α1(xi) ⊗ · · · ⊗ αj−1(xi), (20)

where α0(xi) = (1,0).

Assume that there are two prioritized attributes c1 ≻ c2, α1(xi) = (0,1) and α2(xi) =

(0.3,0.5). Then, by Eq. (20), we get w1(xi) = (1,0) and w2(xi) = (1,0)⊗ (0,1) = (0,1).

Furthermore, by Eqs. (18) and (19), we respectively obtain

α(xi) =
[

(1,0) ∨ (0,1)
]

∧
[

(0,1) ∨ (0.3,0.5)
]

= (0.3,0.5)

and

α(xi) =
[

(1,0) ⊕ (0,1)
]

⊗
[

(0,1) ⊕ (0.3,0.5)
]

= (0.3,0.5).

From the above, we notice that for the alternative xi , when the attribute value un-

der the first prioritized attribute is (0,1), neither of the aggregation results derived from

Eqs. (18) and (19) is (0,1), which indicates that there exists compensation between the

two attributes. Thus, the PIFA operators shown in Eqs. (18) and (19) do not capture the

prioritization relationship between the two attributes and they are not suitable to handle

the above intuitionistic fuzzy MADM problems with the prioritized attributes. However,

by using our prioritized aggregation operator defined as Eqs. (14) and (15), we get

w1(xi) = (1,0), w2(xi) = (0,1)
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and

α(xi) = (0,1),

which are rational. Therefore, it can be concluded that our developed prioritized aggre-

gation operators are also applicable for solving the intuitionistic fuzzy MADM problems

with prioritized attributes and are more effective than the PIFA operators shown in Yu and

Xu (2013).

(2) A comparison with the hesitant fuzzy prioritized weighted average operator

In order to solve the hesitant fuzzy MADM problems with prioritized attributes, Wei

(2012) developed the following hesitant fuzzy prioritized weighted average (HFPWA) op-

erator:

h(xi) =

m
⊕

j=1

(

Tj (xi)hij
∑m

j=1
Tj (xi)

)

=
⋃

γi1∈hi1,...,γim∈him

{

1 −

m
∏

j=1

(1 − γij )

Tj (xi )
∑m

j=1
Tj (xi )

}

, (21)

where hij is an HFE representing the possible attribute values of the alternative xi under

the attribute cj (j = 1,2, . . . ,m) and Tj (xi) is the priority weight of the attribute cj

regarding the alternative xi defined by

Tj (xi) =

{

1, j = 1,
∏j−1

r=1
q(hir ), j > 2,

(22)

where q(hij ) is the score of hij derived from Definition 5.

Below we make a detailed comparison of our developed prioritized aggregation opera-

tors with the HFPWA operator through the following example concerning the introduction

of overseas outstanding teachers.

Example 5 (See Wei, 2012). To strengthen academic education and promote the build-

ing of a teaching body, the school of management in a Chinese university wants to intro-

duce overseas outstanding teachers. This introduction has received great attention from

the school. A panel of decision makers constituted by the university president, the dean

of management school and the human resource officer will take the whole responsibil-

ity for this introduction. They came up with a strict evaluation for five candidates xi

(i = 1,2, . . . ,5) from the following four aspects: morality c1, research capability c2,

teaching skill c3 and educational background c4. This introduction will be in strict ac-

cordance with the principle of combining ability with political integrity. There is a priori-

tization relationship over the attributes: c1 ≻ c2 ≻ c3 ≻ c4. Each candidate xi is evaluated

using the HFE hj (xi) by the panel of decision makers under the attribute cj , see Table 6.

Below we utilize the proposed method to deal with the above hesitant fuzzy MADM

problem with prioritized attributes.

Firstly, by Eq. (16), we calculate the priority weights wj (xi) (i = 1,2, . . . ,5, j =

1,2, . . . ,4) of the attributes cj (j = 1,2, . . . ,4) for candidates xi (i = 1,2, . . . ,5), see

Table 7.
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Table 6

Hesitant fuzzy assessment values.

c1 c2 c3 c4

x1 {0.4,0.5,0.7} {0.5,0.8} {0.6,0.7,0.9} {0.5,0.6}

x2 {0.6,0.7,0.8} {0.5,0.6} {0.4,0.6,0.7} {0.4,0.5}

x3 {0.6,0.8} {0.2,0.3,0.5} {0.4,0.6} {0.5,0.7}

x4 {0.5,0.6,0.7} {0.4,0.5} {0.8,0.9} {0.3,0.4,0.5}

x5 {0.6,0.7} {0.5,0.7} {0.7,0.8} {0.2,0.3,0.4}

Table 7

Hesitant fuzzy priority weights.

w1 w2 w3 w4

x1 {1} {0.4,0.5,0.7} {0.2,0.4,0.56} {0.12,0.28,0.504}

x2 {1} {0.6,0.7,0.8} {0.3,0.42,0.48} {0.12,0.252,0.336}

x3 {1} {0.6,0.8} {0.12,0.24,0.4} {0.048,0.144,0.24}

x4 {1} {0.5,0.6,0.7} {0.2,0.3,0.35} {0.16,0.27,0.315}

x5 {1} {0.6,0.7} {0.3,0.49} {0.21,0.392}

Moreover, by Eq. (17), we compute the overall attribute values of the candidates xi

(i = 1,2, . . . ,5), shown as:

h(x1) = {0.6029,0.8203,0.9543}, h(x2) = {0.7654,0.8862,0.9425},

h(x3) = {0.6729,0.8830,0.9241}, h(x4) = {0.6801,0.8177,0.8875},

h(x5) = {0.7881,0.9179,0.9216}.

Finally, according to Definition 5, the scores of h(xi) (i = 1,2, . . . ,5) are obtained:

q(h(x1)) = 0.7925, q(h(x2)) = 0.8647, q(h(x3)) = 0.8267,

q(h(x4)) = 0.7951, q(h(x5)) = 0.8759.

Consequently, the ranking of the five candidates is x5 ≻ x2 ≻ x3 ≻ x4 ≻ x1.

In order to obtain the ranking of the five candidates, Wei (2012) adopted the HFPWA

operator defined as Eqs. (21) and (22) to compute the overall attribute values of candidates,

and then rank the candidates according to the scores of the overall attribute values defined

in Definition 5. Here we omit the detailed procedure of Wei’s method and only list the

obtained ranking of candidates: x5 ≻ x2 ≻ x1 ≻ x4 ≻ x3.

It can be easily seen that the ranking of the five candidates derived from our method

is slightly different from that yielded by Wei’s method. The main reason may be that in

the two methods the priority weights of attributes are generated in different ways. In our

method, we indeed use a t-norm to induce the priority weights of attributes. In this pro-

cess, we make full use of the given hesitant fuzzy decision information and avoid the loss

of original information; while in Wei’s method, we first need to compute the scores of
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Table 8

Hesitant fuzzy attribute values.

c1 c2 c3

x1 {0.2,0.3,0.5,0.8} {0.2,0.3,0.4} {0.4,0.6}

x2 {0.3,0.45,0.6} {0.2,0.4} {0.3,0.5,0.7}

Table 9

Real-valued priority weights.

w1 w2 w3

x1 1 0.45 0.135

x2 1 0.45 0.135

Table 10

Hesitant fuzzy priority weights.

w1 w2 w3

x1 {1} {0.2,0.3,0.5,0.8} {0.04,0.09,0.2,0.32}

x2 {1} {0.3,0.45,0.6} {0.06,0.18,0.24}

hesitant fuzzy attribute values, which are real numbers, and then calculate the priority

weights of attributes by the product of the scores, which are also real numbers. In this

course, the given hesitant fuzzy decision information is not fully utilized and just trans-

formed into single real numbers, which leads to the distortion and loss of information and

thus results in inaccurate decision results. We shall further illustrate this by the following

example:

Suppose that an MADM problem is composed of two alternatives x1 and x2, and three

attributes c1, c2 and c3 over which there exists the prioritization relationship c1 ≻ c2 ≻ c3.

The attribute value of each alternative under each attribute expressed by an HFE is shown

in Table 8.

In the following, we shall investigate the priority weights of attributes generated by

Wei’s method and our method, respectively. At first, we use Wei’s method, i.e. Eq. (22),

to calculate the priority weights of attributes. For convenience, we denote the hesitant

fuzzy attribute values of the alternatives xi (i = 1,2) under the attributes cj (j = 1,2,3)

as hij (i = 1,2, j = 1,2,3). Then, according to Definition 5, we calculate the scores of

all hesitant fuzzy attribute values, shown as:

q(h11) = q(h21) = 0.45, q(h12) = q(h22) = 0.3, q(h13) = q(h23) = 0.5.

Moreover, by Eq. (22), we compute the priority weights of attributes, see Table 9.

Again, we use the developed method, i.e. Eq. (16), to compute the priority weights of

attributes and list the results in Table 10.

From Tables 9 and 10, it can be easily observed that by Wei’s method, for the alterna-

tives x1 and x2, the generated priority weight of each attribute is the same although their

assessment information under the attribute is different, which is unreasonable. The reason
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Table 11

Real-valued priority weights.

w1 w2 w3 w4 w5 w6

x1 1 0.748 0.4543 0.1008 0.0902 0.0742

x2 1 0.6104 0.5255 0.4322 0.3663 0.2913

x3 1 0.675 0.5886 0.3269 0.2361 0.2112

x4 1 0.81 0.7063 0.2373 0.1873 0.1041

x5 1 0.5984 0.4239 0.2741 0.2453 0.1033

is that in the process of generating priority weights for attributes, the score function is

used to transform the given hesitant fuzzy attribute values into single real numbers, which

leads to distortion and loss of information. Nevertheless, our method takes full advantage

of the given hesitant fuzzy decision information, and for the alternatives x1 and x2, the

generated priority weights of each attribute are different, except for those of the first prior-

itized attribute, that is, the generated priority weights are dependent upon the alternatives,

which capture the characteristic of the MADM problems with prioritized attributes.

5.2. Comparative Studies of Prioritized Dual Hesitant Fuzzy MADM Methods

As mentioned in the introduction, in order to solve the dual hesitant fuzzy MADM prob-

lems with prioritized attributes, Ren and Wei (2017) established a decision making method

based on a correctional score function and a dice similarity measure of DHFEs. In this

part, we make a detailed comparison with this method to illustrate the advantages of our

proposed method through the car selection problem shown in Example 4.

Now we adopt Ren and Wei (2017)’s method to deal with the car selection prob-

lem described in Example 4. Firstly, by the formulae w1(xi) = 1 and wj (xi) =
∏j−1

r=1
SDα (dr(xi)) for j 6= 1, we calculate the priority weights wj (xi) (i = 1,2, . . . ,5,

j = 1,2, . . . ,6) of the attributes cj (j = 1,2, . . . ,6) for the cars xi (i = 1,2, . . . ,5), see

Table 11. Here, SDα (dr(xi)) is the correctional score function of the dual hesitant fuzzy

attribute value dr(xi) (for details about the correctional score function of DHFEs, please

see Ren and Wei (2017).

Then, based on the formula PD(x∗, xi) =
∑

6

j=1

wj (xi)
∑

6

j=1
wj (xi)

2SDα (d∗
j )SDα (dj (xi))

SDα (d∗
j )2+SDα (dj (xi))

2
, we

calculate the dice similarity measure between the ideal alternative x∗, defined as x∗ =

(d∗
1
, d∗

2
, . . . , d∗

6
) with d∗

j = {{1}, {0}}, j = 1,2, . . . ,6, and each car xi (i = 1,2, . . . ,5),

shown as:

PD(x∗, x1) = 0.8264, PD(x∗, x2) = 0.9059, PD(x∗, x3) = 0.9301,

PD(x∗, x4) = 0.8698, PD(x∗, x5) = 0.8985.

Therefore, the ranking of the five optional cars is x3 ≻ x2 ≻ x5 ≻ x4 ≻ x1, and the con-

sumer should buy the third car x3.

Obviously, the ranking of the five optional cars derived from Ren and Wei (2017)’s

method is markedly different from that derived from our proposed method, which is
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x4 ≻ x1 ≻ x3 ≻ x2 ≻ x5. The reason may be that in the two methods the dual hesitant

fuzzy decision information is handled in different ways. In Ren and Wei’s method, all

original dual hesitant fuzzy decision information is not sufficiently utilized and just trans-

lated into single real numbers by the correctional score function, which leads to distortion

and loss of information. However, in our method, all original dual hesitant fuzzy decision

information is first dealt with by means of a dual hesitant fuzzy t-norm to generate the

priority weights of attributes, and then the single dual hesitant fuzzy attribute values are

conducted a weighted aggregation by the developed PDHFWT operator to yield the over-

all attribute values of alternatives. In the whole process, we make the best of the given

dual hesitant fuzzy decision information and avoid the loss of information. Furthermore,

it is worthwhile to mention that by using our method, the obtained priority weights of

attributes and overall attribute values of alternatives are all in the form of DHFEs, which

can well embody the dual hesitant essence of dual hesitant fuzzy MADM problems.

From the above two comparisons, it is not hard to see that the developed prioritized

aggregation operators can well circumvent the drawbacks of some existing prioritized

aggregation operators, and have great superiority in manipulating such dual hesitant fuzzy

MADM problems in which there is a prioritization relationship over attributes. The main

advantages of the developed prioritized aggregation operators are summarized as follows:

(1) The developed prioritized aggregation operators take full advantage of the given

dual hesitant fuzzy decision information and avoid the loss of original information.

(2) By the developed prioritized aggregation operators, the obtained priority weights

of attributes and overall attribute values of alternatives take the form of DHFEs, which

can well embody the dual hesitant essence of dual hesitant fuzzy MADM problems.

(3) The developed prioritized aggregation operators permit the decision makers to have

more choices when choosing aggregation techniques since in these operators, the dual

hesitant fuzzy t-norms and t-conorms are changeable.

(4) The developed prioritized aggregation operators are also applicable for solving the

intuitionistic fuzzy and hesitant fuzzy MADM problems with prioritized attributes, and

are more effective than relevant prioritized aggregation operators.

6. Conclusions

In this paper, we have been concerned with the aggregation of dual hesitant fuzzy infor-

mation in multi-attribute decision making (MADM) problems with prioritized attributes.

Firstly, we have defined dual hesitant fuzzy t-norms and t-conorms and studied a spe-

cial class of dual hesitant fuzzy t-norms and t-conorms in detail, which are constructed

by traditional t-norms and t-conorms. Secondly, we have developed the prioritized dual

hesitant fuzzy weighted triangular operator to aggregate dual hesitant fuzzy assessment

information of alternatives under the prioritized attributes, from which a family of prior-

itized dual hesitant fuzzy aggregation operators can be derived. Thirdly, we have applied

the developed prioritized aggregation operators to solve the dual hesitant fuzzy MADM

problems with prioritized attributes. Finally, by comparative analyses, we have shown that
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the developed prioritized aggregation operators take full advantage of the given decision

information, avoid the loss of original information, and thus yield better final decision re-

sults. Moreover, the priority weights of attributes induced by a dual hesitant fuzzy t-norm

take the form of dual hesitant fuzzy elements, which can well embody the dual hesitant

essence of dual hesitant fuzzy MADM problems. Besides, the developed prioritized ag-

gregation operators are also applicable for handling the intuitionistic fuzzy and hesitant

fuzzy MADM problems with prioritized attributes, and are more effective than relevant

prioritized aggregation operators.

As shown in Subsection 4.2, when we use different dual hesitant fuzzy t-norms to in-

duce priority weights of attributes or different dual hesitant fuzzy t-norms and t-conorms

to aggregate the attribute values of alternatives, different rankings of alternatives will be

gotten. Which dual hesitant fuzzy t-norm performs better in generating priority weights,

and which dual hesitant fuzzy t-norm and dual hesitant fuzzy t-conorm conducts bet-

ter in aggregating attribute values? In our future work, we will try to solve these two

issues. Moreover, as Zhao et al. (2017) and Liu et al. (2017) pointed out that in the de-

cision making process different decision makers have different knowledge, experience,

culture and educational backgrounds, they always use heterogeneous preference repre-

sentation structures to express their preferences. In future studies, we will investigate the

resolution of heterogeneous multi-attribute group decision making problems, in which

the decision information is expressed as hesitant fuzzy elements, dual hesitant fuzzy el-

ements, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Besides,

the consensus problem is a hot topic in group decision making (Capuano et al., 2017;

Del Moral et al., 2018; Herrera-Viedma et al., 2017). In our future work, we attempt to

study the consensus reaching model in group decision making based on dual hesitant fuzzy

preference relations by considering social influence.
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