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Abstract. Neural networks are often characterized as highly 
nonlinear systems of fairly large amount of parameters (in order 
of 103 - 104 ). This fact makes the optimization of parameters 
to be a nontrivial problem. But the astonishing moment is that 
the local optimization technique is widely used and yields reliable 
convergence in many cases. Obviously, the optimization of neu­
ral networks is high-dimensional, multi-extremal problem, so, as 
usual, the global optimization methods would be applied in this 
case. On the basis of Perceptron-like'i unit (which is the building 
block for the most architectures of neural networks) we analyze 
why the local optimization technique is so successful in the field of 
neural networks. The result is that a linear approximation of the 
neural network can be sufficient to evaluate the start point for the 
local optimization procedure in the nonlinear regime. This result 
can help in developing faster and more robust algorithms for the 
optimization of neural network parameters. 

Key words: neural networks, optimization theory, pattern recog 
nition. 

1. Introduction. The main emphasis of neural networks 
is a massively connected and highly parallel system of simple 
processing units. This"idea steams from the real biological 
systems. In fact, these units are~uge simplification of the 
real biological neurons, so the term "~rtificial neural networks" 
(ANN) is widely used. The information in ANN is stored in 
connections (weights) in between the units. In principle, ANN 
can be easily adopted from one problem to another simply by 
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changing these weights properly. 
With the invention of a new training technique (so called 

backward error propagation or backpropagation method) (Ru­
melhart, 1986) ANNs have been successfully applied for many 
diverse real-world problems such as mapping text to phonemes 
(Sejnowski and Rosenberg, 1987), determining the secondary 
structure of proteins (Qian and Sejnowski, 1988), playing 
backgammon (Tesauro and Sejnowski, 1988), identification of 
sonar signals (Gorman and Sejnowski, 1988). In principle, 
this new training method is a version of stochastic gradient 
descent, known in the literature as a stochastic approxima­
tion, which was solved conceptually by Robbins and Munroe 
(1951). However, ANN training has given a reputation for 
being very slow. Numerical optimization technique offers a 
rich and robust set of techniques which can be applied in an 
attempt to improve learning rates (Battiti, 1992). In particu­
lar, the conjugate gradient method is easily adopted to ANN 
(Johansson and et.al., 1992). 

Obviously, optimization of ANN is highly dimensional and 
multi-extremal problem, so, as usual, the global optimization 
methods would be preferable in this case. But the most aston­
ishing moment is that the local optimization technique yields 
reliable convergence in many cases. This contradiction in­
dicates that the process of searching for minimum in ANN 
is poorly understood. On the basis of Perceptron-like unit 
(Rosenblatt, 1958) we analyze why the local optimization tech­
nique is so successful in the field of neural networks. 

2. Perceptron and discriminant function. A pri-
mary building block for the most architectures of ANN is Per­
ceptron-like unit, which output is described as follows 

K 

Y = <fo(I: wixd, (1) 
i=O 
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where {WO,",, W K} are adjustable weights (parameters) of 
the unit, {xo,"', x K} is K + 1 dimensional input with as­
sumption that Xo = 1. The weight Wo on this extra input is 
called the bias and is equivalent to a threshold of the opposite 
sign. It can be treated just like the other weights. 4>(,) is non­
linear, squashing function, which is essential to have a stable, 
nonlinear system. A large variety of ANN architectures can 
be composed by connecting the outputs of one group of the 
units with the inputs of another group of units. As an exam­
ple, the feedforward ANN with one hidden layer can be easily 
constructed as shown in Fig. 1. 

Input Hidden Output· 

Fig.1. Architecture of the feedforward ANN with one 
hidden layer. Solid circles denote the processing 
units, straight lines between them are connec-
tions. . 

A concept central to the practice of pattern recognition is 
that of discriminants. The idea is that a pattern recognition 
system learns adaptively from experience and distills various 
discriminants D(x). In the case of a two classes A and B the 
task is to learn the set of weight values so that all patterns 
can be classified correctly using the same set of weights 

D(x) > 0, x E A 
D(x) < 0, x E B 

(2) 
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The simplest discriminant is a linear function 

K 

D(x) = L WiXj. (3) 
i=O 

Note, that in essence, the Perceptron belongs to the class of 
linear discriminant functions, because y in (1) can be rewritten 
as follows 

y( x) = rP( D( x) ) (4) 

Function rP is a subject to how the error of the classifier 
is measured. If we have a linear function (rP( x) == x) the error 
is computed as a some distance measure between the actual 
output and the target value. If we have "hard-limiting" step 
function, then we simply count the number of misclassifica­
tions. The linear output makes the classifier to be very sen­
sitive to the outliers, e.g., only one specific data point drawn 
from the tail of the distribution can shift significantly the re­
sulting linear discriminant. On the contrary, the error count­
ing criterion makes no sense whenever the misclassification is 
tolerable or significantly large. But the positive feature in this 
case is outliers-insensitive classifier. A reasonable choice for rP 
is smooth, monotonic squashing function which gives outliers­
insensitive classifier, capable to weight the classification error 
depending on the distance between the output and the target 
values. 

3. Test on Highleyman's classes problem. We will 
analyze the performance of Perceptron-like unit (1) on the 
classical example of Highleyman's classes (see Highleyman, 
1962). The set of data consists of two overlapping Gaussian 
distributions with the mean J-l and dispersion a parameters 
shown in Fig. 2. The overlap of these two classes is 6% but 
the optimal result for the linear discriminant function is 10% 
of errors. For this problem the linear discriminant function is 
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as follows 
D(z) = Wo + WIZl + W2Z2. (5) 

The task is from a given set of N points (N /2 points belong 
to the class A, N /2 - to the class B) to find the optimal 
discriminant function by minimizing the error function 

1 N 
E = 2 L(Y(z(P») - t(P»)2, 

p=1 

(6) 

where t(p) is the target (desired output value) associated to 
the point z(p). Our choice is t = -0.5 for the class A and 
t = 0.5 for the class B. y(z(p») is the output of the classifier 
for the point z(p). 

Fig. 2. Two overlapping Gaussian distributions of High­
leyman's classes. Class A: J.L = (1,1), (j = 
(1,0.5), class B: J.L = (2,0), (j = (0.1,2). 
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In our analysis we will use the hyperbolic tangent function 
( 4>( .) = tanh(·)) which fulfills the necessary properties 

lim tanh(x) = -1, 
%--00 

lim tanh(x) = 1, 
%-00 

(7) 

tanh(O) = o. 
An important issue of our analysis is to investigate the 

influence of the "steepness" factor of the output function 4>. 
First of all, we will parameterize the linear discriminant func­
tion (5) (see also Wolff, 1966) in terms of spherical angles 
Ql, Q2 and radius distance R 

Wo = RCOSQl 

Wl = RsinQl COSQ2 

W2 = RsinQl sin Q2 

(8) 

It is easy to see that these spherical angles Ql, Q2 completely 
define the location of the discriminant line with the slope a 
and intersection b 

D(x) = 0: (9) 

the radius R defines the error weighing strategy (Fig.3) as 
follows 

linear output, squared distance criterion 
nonlinear smooth output function, weighed errors 
"hard-limiting" function, error counting 

4. Results. At the first glance, minimization of (6) is 
not a trivial problem, because (6) is composed as a sum of 
non convex functions, and the final result can be extremely 
complicated, multi-modal function. The main goal of our in­
vestigation is to analyze how the error function (6) is effected 
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Fig.3. Output function dependence on the radius pa­
rameter R. 

by the radius parameter R and the sample size N. The influ­
ence of the "steepness" factor R can be investigated by plot­
ting 3D projection of (6) versus etl and et2 when R is fixed. 
Then a comparison for a different sample size can be made. 
These results are presented in Fig. 4-7. 

In the linear case (R = 0.1) the error function is very 
smooth, unimodal surface (Fig. 4) and the variation of sample 
size from 6 to 200 makes a very little change of the surface 
shape. With the increasing of the radius parameter R new 
local minima appear, see for example the top picture in Fig. 5 
when R = 1, N = 6. In this picture a new local minimum 
is approximately at etl = 0.4, et2 = 3.2. For the larger radius. 
parameter (R = 10) the error function becomes very compli­
cated surface with multiple local minima. (see Fig. 5 at the 
bottom). A similar behavior is observed for the sample size 
N = 20 in Fig.6. Note, that the increasing of the sample size 
N acts as a "low frequency" filter, which smoothes the error 
surface (compare the bottom pictures in Fig. 5-7). The most 
interesting result is that the location of the global minimum 
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o 

Fig. 4. The error function at the radius R = 0.1 when 
the sample size N = 6. Similar picture holds for 
20 and 200 samples also. 

is weakly effected by varying R and N in a wide range. It 
means that a solution obtained for a "small" R can be used 
as the start point of the local optimization procedure to find 
the minimum for the larger R. 

Summarizing one can say that the error function surface 
mainly consists of elongated ravines, and one of them (where 
the global minimum is located) starts from the origin. 

5. Discussion and conclusions. These results suggest 
some interesting conclusions. In practice, the optimization 
of ANN parameters is performed simultaneously (in our case 
al, a2, R or Wo, Wl, W2 in Cartesian domain). First of all, it is 
potentially dangerous to use a very small sample size, because 
of a large possibility to be trapped in to a local minimum. 
This conclusion completely corresponds the practice of pattern 
recognition. 

Secondary, now we can explain why it is a good practice 
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Fig. 5. The error function for N = 6 at the radius R = 1 
(top) and R = 10 (bottom). 
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Fig. 6. The error function for N = 20 at the radius 
R = 1 (top) and R = 10 (bottom). 

o 
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Fig. 7. The error function for N = 200 at the radius 
R = 1 (top) and R . 10 (bottom). 
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in ANN training to initialize the weights near the origin (e.g., 
to set sm8n random values). In this case ANN is a linear 
system and a preliminary search for the global minimum can 
be easily performed by the local optimization technique. At 
the next phase the outputs of processing units begin to sat­
urate, and a precise location of the global minimum is found 
by searching along the ravine, see Fig. 8 at the top, where 
the global minimum of (6) is shown versus the radius pa­
rameter R. When the optimization is performed over all 3 
parameters simultaneously, obtained solution corresponds to 
the optimal R value. Alternatively, one can split explicitly 
linear and nonlinear stage of the optimization solving directly 
the linear approximation at first, and then using this result 
as the start point for the optimization in the nonlinear stage. 
Note, that the minimal learning error does not necessary cor­
respond the optimal performance on the test set (we used 2000 
independent test samples), as shown in Fig. 8 at the bottom. 
The advantage ofthe nonlinear output function with adaptive 
steepness factor is that a better performance on the test set 
can be achieved (70% in the linear case, 88% with the nonlin­
ear output function). 

Third, a possibility of the local optimization procedure to 
be trapped at the spurious minimum (where R is large) can be 
prevented by introducing an additional "regularization" term 
which "lifts up" the error surface at a large distance R. One 
of the possible constrains is the squared sum of all weights 

K 

r(w) = Lw~. 
i=O 

Then the minimization of (6) is replaced by 

Et = E + 'xr(w). 

(10) 

(11) 

This additional constrain adds a weight "decay" term to the 
gradif'llt of (6) and prevents the weights to get large values. 
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Indeed, i.his modification is also widely used in neural network 
optimization. 

Finally, we do not have a complete confidence that the 
same picture can be always expected in ANN. A straightfor­
ward extension of these results to ANNs, which are very com­
plex systems composed from a large amount of Perceptron­
like units, is not so obvious: However, we hope that these 
results can help to develop faster and more robust algorithms 
for ANN training. 
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