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Abstract. The problem of mathematical modelling and simu­
lating of two-dimensional (2D) random fields, using space autore­
gressive models, is analyzed. Algorithms for the estimation of pa­
rameters of models, procedures for finding correlation coefficients 
and for synthesis of the realizations of given parameter fields are 
presented. 
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1. Introduction. Solving the problems of modelling and 
controlling of the objects, having parameters, distributed in 
space, and random fields, space autoregressive models are 
widely used. Autoregressive models in two dimensions gen­
erating Markov fields as defined by Woods, 1972. Correspon­
dence of autoregressive models to finite difference approxima­
tion of partial differential equations, covariance of models and 
their application in image processing as considered by J ain, 
1977. Autoregressive models were used in the research of fields 
and images (Vittich, Sergeev and Soifer, 1982), in procedures 
of recognition of stochastic textures (Therrien et al., 1986). 
The attention to using autoregressive models is not decreasing. 
This is proved by articles in the magazine Pattern Recognition 
(Mhidra et al., 1993; Oe, 1993), in other publications. 

The author of this article and the collaborators were ana-
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lyzing questions of modelling random fields and images. Some 
theorical aspects of this work were published earlier (Balke­
viCiene, Valteris, 1989a, bi Valteris, 1989). Application of 
autoregressive models for 2D random field analysis is summa­
rized in this article. 

2. Statement of the problem. We present a two-di­
mensional field in a plane surface by his values x( i, j) at the 
points of the grid of a finite rectangle, with coordinates (i,j). 

Let's say, that field x(i,j) is created by a two-dimensional 
linear filter through which comes white Gaussian noise w(i,j), 
having zero average and finite dispersion O"~. 

The forming of two-dimensional field x( i, j) by using linear 
filter we describe by space autoregression equation: 

x(i, j) = L a(k, l)x(i - k, j -1) + w(i, j), (1) 
k, lED 

in which D - non-zero definition area of autoregression coeffi­
cients a(k, 1). 

The problem of forming autoregressive model Eq. (1) con­
sists of the selection of D area, of finding coefficients a( k, 1) 
and noise dispersion O"~. 

3. Estimation of parameters. For more detailed anal­
ysis of Eq. (1), we will part three available configurations of 
definition area D of coefficients a(k,l) and the models corre­
sponding them: 
- one quadrant causal model (CMl), whose D area is formed 

by values (k,l): k = 0, K, 1 = 0, K, (k,l) =I- (0,0); 
- asymmetrical half-plane (two quadrant) causal model 

(CM2): k = O,K, 1 = -K,K, k = 0, 1> 0; 
- non-causal model (NCM): k = -K, K, 1 = -K, K, 

(k,l) =I- (0,0), where K - model's rank. 
Multiplied (1) by x(i - k',j - 1'), where k', l' E G, and 
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averaged for all i, j values, we get a set of equations: 

r(k', 1') = L a(k, I)r(k' - k, l' -1), 
k', I'EG k, lED 

reO, 0) = L a(k, I) r(k, I) + (1~. 
(2) 

k, lED 

In this set: 

r(k', 1') = . ~ [xCi, j)x(i - k', j -I')] 
I, JEN 

- field covariation coefficients in area G = (k' > 0 V l' ) u (k' = 
0, l' > 0), valid for Eq. (2), r(O, 0) = (1~ - field dispersion. 

For NCM with square area D, according to Eq. (1), the 
value of field at point (i, j) is described by dependency: 

K K 

x(i,j)= L L a(k,/)x(i-k,j-/)+w(i,j). (3) 
k=-K I=-K 
(k, 1)#(0, 0) 

Because of two-dimensional covariation functions symme­
try with respect of the origin of the coordinates, we can as­
sume NCM coefficients a(k, I) symmetry: a(k, I) = a( -k, -I), 
a(rn, n) = a( -rn, -n). Then in Eq. (3), we can pass from 
summing in all definition plane to half-plane, as it was done 
with CM2. 

Multiplied (3) by x(i-k',j-l') and averaged for all (i,j) E 
N, we get Eq. 4. 

To create autoregressive model Eq. (1), the sets of (2) or 
( 4) must be solved in a( k, I) and (1~ respect, and for this must 
be known the statistical characteristics of the modeling field: 
average, dispersion and covariation coefficients. As they are 
not known beforehand, they must be determined from the data 
of observation. 
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K K 

r(k', I') = 2: 2: a(k, 1) [r(k' - k, [' -1) 
k=-K I=-K 
(k, 1):;6(0, 0) 

+ r( k' + k, [' + [) 
K K 

-2: L a(rn, n) 
rn=-K n=-J( 
(rn, n):;6(O, 0) 

X r( k' + k - rn, I' + 1 - n)] , 
K K 

r(O, 0) = L L a(k, 1) [2 r(k, 1) 
k=-K I=-K 
(k, 1):;6(0, 0) 

K K 

-L L a(rn, n) 
rn=-K n=-K 
(rn, n):;6(O, 0) 

X r(k - rn, 1- n)] + O"~". 

(4) 

4. Adequation models. After choosing a model and 
after estimating its parameters, its adequacy for modeling field 
must be checked. One of the methods of checking adequation 
is a comparison of correlation or covariation functions of the 
modelling field and the model. For this, correlation coefficients 
matrix of the model must be known. 

The connection between covariation coefficients and au­
toregressive model parameters is shown in Eq. (2) or (4), 
which were used for estimating models parameters. They can't 
be used directly for inverse problem, because the quantity of 
covariation coefficients in them is larger then a quantity of 
autoregression coefficients a( k, 1). 
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Dividing Eq. (2) first expression by r(O, 0), we get: 

e(k', ll) = L a(k,l)e(k' - k, II -l), (5) 
k',I'EO k,IED 

where e(.) - correlation coefficients. 
On the base of (5), we will create iteration procedure for 

finding correlation coefficients: 

(r}(k',l')= z= a(k,[) (n g1)(k' _k,l'_l), (6) 
k,IED 

(n) (n-I) , 
where (] (.), (] (.) - (](.) value at nand (n - 1) iterations. 

We define the starting and limiting conditions for the pro-

cedure: (~) (k', l') = 1, if k', [' E G, e(k', l') = 0, if k', [' rt G. 
The iteration sequence Eq. (6) converges into solution 

Eq. (5), if the condition Eq. (7) is fulfilled: 

A = z= I a( k, l) I < 1. (7) 
k,IED 

Condition Eq. (7) is valid for non-causal models too. In 
this case the iteration procedure is 

(r;/(k',l') = z= a(k,l)[(ngI)(k'_k,l'_l) 
k,IED 

+e(k'+k,l'+l) (8) 
(n-I) ] - L a(m,n) e (k'+k-m,l'+l-n). 

m,nED 

The procedti~es Eq. (6) and (8) are ceased after fulfilling 
the condition: 

~ (e)(k', I') - (ne-I)(k', 1'))2 ~ 
~ (n-I) -.;;:: C, 

k',I'EG (] (k', 11) 

(9) 
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where e - chosen small number. 
The models adequacy to the modeling field is determined 

by comparing correlation coefficients eCk', I') of the real field 
with eck', I') of the model. 

Let's say, we have a random field with known correlation 
function a(k',I'). The best autoregressive model must be cho­
sen for this field. Using the comparison of the correlational 
functions of the field and the model, the model are sorted, be­
ginning with the model with a minimal number of autoregres­
sive coefficients a(k, I). While sorting the mean square error 
of models correlational function equivalence to real is checked. 
The best approach is chosen from the minimum condition: 

E [e(k'; I') - eck', I')] 2 = min. 
1,;',I'eG 

It is defined from the analysis of the model's correlation 
identity, that CMl and CM2 fully ensures correlational iden­
tity only for some fields with correlational functions, distinc­
tive according to arguments. The first order models CMl 
and CM2 can't guarantee correlational identity for fields with 
correlational functions, not distinctive according to the argu­
ments, though they are giving smaller estimation errors. Ac­
ceptable precision is got only for higher order models (Valteris, 
1989). 

Non-causal models have no above mentioned durations, 
so they must be firstly used, in spite of their non-linearity in 
parameters a(k,l) respect. 

S. Synthesis of realizations. Exploring random fields, 
realizations with described characteristics are needed. For this 
may be used synthesized realizations of given parameter fields. 
Field values x(i,j) generation, when the models rank K and 
its parameters - autoregression coefficients a(k, I) and field 
dispersion O'~ - are known, is called random field synthesis. 
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For the synthesis of a field, described by Eq. (1) equation, 
we use iteration procedure: 

(n)(..) '" (k I) (n-l)(. k . I) (..) x Z, J = L...J a, x Z - ,J - + w ~,J , (10) 
k,IED 

which is converging at Eq. (1) solution, if the condition of 

stability EQ. (7) and the starting condition ~)(i,j) = w(i,j) 
are fulfilled. 

The procedure of synthesis (10) is ceased, when 

(
n)( . . ) (n-l)( .. ))2 

'" X z, J - x z, J 
L...J (n-l). . ~ C, 

ijEN X (Z, J) 
(11) 

For obtaining synthesized fields optical image, the field 
meanings must be positive. For this, gotten values x( i, j) are 
added together with some fields brightness mean value m x . 

It is convenient to use the rule of square deviations, defining 
that mx = 3 (jx. Fig. 1 shows the examples of the synthesized 
fields. 

While using discrete measurement means for controlling 
fields, because of the limited number of measured channels, 
observations are only partial, only a limited number of val­
ues is measured. Wanting to rebuild the whole image of the 
field, the methods of rebuilding or interpolation must be used. 
The rebuilding of unobserved values of the field in this arti­
cle is offered to be changed into statistical interpolation using 
the algorithm of autoregressive field synthesis Eq. (10). It is 
enough to find the estimations of fields correlation coefficients 
matrix elements for this, using obtained observations, and to 
build the autoregressive model of the field. 

To fill unobserved values of the field, we will use iteration 
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a b 

Fig.!. Images of synthesized fields of CM1 (a) and 
NCM (b) of first order: a - a(O, 1) = a(l,O) = 
0.8, a(l,l) = -0.64; b - a(O, 1) = a(O, -1) = 
a(l,O) = a( -1,0) = 0.20, (jw = 30 . 

. 
procedure, analogous to Eq. (10): 

(n-l)(. .) r b . (' ') x Z, J lor 0 servmg x z, J , 

(n)(, ') x Z, J = 

""' (n-l) , , L..J a(k,/) x (1, - k, J -I) 
k,IED (12) 

+w(i,j)- [1- L a(k,l)]mx 
k,IED 

- for the rest of x( i, j). 

Condition Eq. (11) suits for ceasing the procedure. The 
entered component [1- E a(k, l)] mx in Eq. (12), guarantees 
the holding of average m x , if the x(i,j) are not-centered. 

The essence of the suggested algorithms for fields values 
statistical interpolation is, that field around the observing val­
ues is filled with values, statistically connected with them, 
keeping given statistical characteristics of the field. It is espe­
cially actual while generating realizations, near to real fields. 
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6. Conclusions. The methods of 2D random fields au­
toregressive models parameters estimation, of definition of cor­
relation functions and of synthesis of realization of fields with 
given characteristics, described in this article, allows the cre­
ation of models, adequate to real fields. They successfully 
might be used in solving problems of modelling objects with 
parameters, distributed in space, of analysis of random tex­
tures, of controlling the quality of tape production. 
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