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Abstract. In the previous papers (Novovicova, 1987; Pupeikis 
1991) the problem of recursive least square (RLS) estimation of 
dynamic systems parameters in the presence of outliers in observa­
tions has been considered, when the filter, generating an additive 
noise, has a transfer function of a particular form, see Fig. 1, 2. The 
aim of the given paper is the development of well-known classical 
techniques for robust on-line estimation of unknown parameters of 
linear dynamic systems in the case of additive noises with different 
transfer functions. In this connection various ordinary recursive 
procedures, see Fig. 2-6, are worked out when systems' output is 
corrupted by the correlated noise containing outliers. The results 
of numerical simulation by IBM PC/AT ( Table 1 ) are given. 
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1. Statement of the problem. By parameter estima­
tion of real objects it is often assumed that the additive noise 
acting on the output of a dynamic system has a Gaussian dis­
tribution. However, data sets, for which the Gaussian model is 
often assumed, sometimes contain a small fraction of outliers 
(Stockinger and Dutter, 1987). That is why the recursive clas­
sical algorithms applied in the on-line estimation of unknown 
parameters, appeared to be inefficient. In this case it is neces-
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sary to work out robust on-line algorithms or to improve the 
ordinary ones. 

Consider a single input XI;, and single output YI; linear 
discrete-time system, which is shown in Fig. 1, described by 
the difference equation 

u. 

Fig. 1. Dynamic system with correlated noise. 

Suppose that YI; is observed with an additive noise NI;, 

I.e., 
(2) 

Then 

UI; = -.alUI;-1 - •.• - anUI;-n + bOX:r:-T + ... + bmXI;-T 

+ N" + a1N"-1 + ... + anNI;-n, (3) 

or 
B(Z-l )Z-T -1 

U" = 1 + A(z-l) XI; + W(z ; h)ek, (4) 

by introducing the backward shift operator z-1 defined by 
Z-lXk = Xk-}, where 

(5) 
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is a sequence of independent identically distributed variables 
with an c: - contaminated distribution of the form 

p(ek) = (1- c:)N(O,u~) +c:N(O,u~), (6) 

p(ek) is a probability density distribution of the sequence ~k; 
'"Yk is a random variable, taking values 0 or 1 with probabili­
ties P('"'(k = 0) = 1 - C:, Vk, 'f/k are sequences of independent­
Gaussian variables with zero means and variances ui, u~ re­
spectively; 

eT = (aT,bT), aT=(al, ... ,an ), bT=(bo, ... ,bm ), (7) 
m n 

B(Z-l) = L bjZ-i, A(Z-l) = L aiz- i , 
i=O i=l 

n, m is the orders of difference equation (1), respectively; 

Nk = W(Z-l; h)ek 

(8) 

(9) 

is a noise filter transfer function; h is a parameter vector, 7' is 
the time delay. 

It is assumed that the roots of A(z-l) are outside the unit 
circle of the z-l plane. The true orders of the polynomials 
A(z-l), B(z-l) are known. The input signal Xk is persistent 
exitation of arbitrary order according to A.strom and Eykhoff 
(1971). 

2. Recursive parameter estimation in the absence 
of outliers in observations. Suppose that 7' = 0 in equation 
(1) and c: = 0 in equation (6), therefore p(~k) = N(O, un. In 
this case, as shown in A.strom and Eykhoff (1971), to estimate 
the vector of unknown parameters eT = ( aT, b T) multivariate 
on-line approaches and algorithms are worked out. On the 
other hand, it is known that in the case when 

W(Z-l; h) = [1 + A(z-l)]-l (10) 
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an ordinary classical recursive least square (RLS) parameter 
estimation algorithm of the shape 

ro = aI, a:> 1 

is used, see Fig. 2. Here 

(11) 

(12) 

(13) 

(14) 

is the vector of unknown parameter estimates after processing 
k + 1 samples; 

is the vector of n and m + 1 most recent observations of input 
Xk and output Uk; 0.95 ~ Ak+1 ~ 1 is a time-varying weighing 
factor. 

It is known (Ljung, 1977) that under the above men­
tioned and some other conditions the RLS is going to have 
the maximal rate of convergence. 

In practice, the assumption (10) is invalid as a rule, and 
the classical RLS is of little use. Therefore a multivariate set 
of recursive algorithms is worked out. In the case when 

(17) 
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, +A ,,-', 

Fig.2. Recursive parameter estimation by the RLS. 

the recursive algo~ithm, based on the technique, which is de­
veloped in Steiglitz and McBride (1965), may be used, see 
Fig. 3. Then, in formulas (11)-(14) the vector Vc ekH and 
equ~tion error ek+l must be replaced by 

(18) 

and 
(19) 

respectively. Here 

(20) 
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Ma 8 (z", 
11A (z .. , 

" x/Ii . 

" e. 
Fig. 3. Recursive parameter estimation by the Steiglitz 

and McBridge method. 

are filtered observations after k samples; 

(21) 

The characteristics and convergence conditions of the 
above mentioned algorithm were investigated by Stoica and 
Soderstrom (1981). 

Let us assume that 

where 

G( -1) -1 + .+ -q. Z = 91Z •••. gqZ • (23) 
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Fig.4. Recursive parameter estimation by the GRLS. 

In sucp. a case the gene:ralized RLS (GRLS) algorithm, see 
Fig. 4, consisting of two RLS algorithms, is uSyd for estimat­
ing the vectoI,'s~f unknown parameters and g T = (91, ... , 9 q) 
accqrding t~ (Hastings-James R.; Sage M.W., 1969). The first 
RLS algorithm calculates the vector of the estimates Ci+1 = 
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T .-T 
(it ,b )k+1 according to formulas (11 )-(13), where 

Uk+1 = [1 + Gk(Z-l)] Uk+b 

xk+1 = [1 + Gk(z-l)] Xk+b 

G'" (-1) '" -1 '" -q k Z = 91"Z + ... + 9qZ . 

(24) 

(25) 

(26) 

(27) 

The second algorithm calculates the vector of the esti­
mates gi+1 = (91, ... ,9q )k+1 using recursive equations of the 
form 

where 
Vg Ck+1 = (ek+1, ... ,ek_q)T, 

and ek+1 is of the shape (14). 

(28) 

(29) 

(30) 

The initial conditions for RGLS can be chosen according 
to (Clarce, 1967). 

Further, suppose that 

W(Z-l; h) = [1 + F(z-l)] [1 + A(z-l)] -1, (31) 

where 
F( -1) f -1 f -11 Z = 1Z + ... + IIZ , (32) 
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Then, the estimates of vectors of the parameters c and 
tr = (ft, ... , f 11) can be calculated using the maximum like­
lihood method (ML) or its on-line version consisting of two 
recursive algorithms, described in (Astrom, Bohlin, 1965), see 
Fig.5. The first recursive ML algorithm (RML) calculates the 

vector of the estimates er = (aT, bT)k according to formulas 
(11 )-(13), where ek+1 and Vc ek+1 are of the shapes (24), (25) 
respectively, with the exeption of 

(33) 

(34) 

The second algorithm calculates the vector of the esti-
........ T .-.. ....... 

mates fk = (ft, ... ,f H) k using recursive equations of the, form 

(35) 

(36) 

(37) 

where 
(38) 

,Ck+1 = [1 + Fk(z-1)] -1 ek+b (39) 

ek+l is of the shape (14). 
The initial conditions for RML can be chosen according 

to (Eykhoff, 1975; Isermann, 1974). 
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Fig.5. Recursive parameter estimation by the Mt. 

It is known (Van den Boom; 1981), that in a more gener~ 
case, i.e., when 

the recursive algorithm· of an extended least square method 
can be used, which for F(z-l) = 0 turned iJ.'lto 011L8 and for 
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G(Z-:-I) = 0 - into the RML. There also exist the algorithms 
of stochastic approximation which usually are recursive pro­
cedures with a scalar step (Saridis, 1974). The convergence 
of the recursive algorithms on the basis of a united approach 
is investigated in (Ljung, 1977). The simulation results of 
the above mentioned algorithms are given in (Isermann and 
coworkers, 1974). 

3. Recursive parameter estimation ·in the pres­
ence of outliers in observations. It has been already ear­
lier assumed that c = O. Now let us consider the situation 
when this assumption is not satisfied. It is known (Novovicova, 
1987) that in both such cases, i.e., c = 0 and W(z-\ h) of the 
form (10) M-estimates of unknown parameters of linear dy­
namic systems (1)-(9) can be calculated using three recursive 
algorithms: 

1) the S-algorithm 

'" '" Pk'Pk+lut/J(ri~l/u) 
Ck+l = Ck + (k) -1 ,(41) 

[t/J'(rk+I/u )] + 'PI+I Pk'Pk+I 

P k'Pk+l 'P I+l P k 
Pk+I = Pk - (42) 

[t/J'(ri~I/U)] -1 + 'PI+I Pk'Pk+l ' 

2) the H -algorithm 

'" '" Pk'Pk+lut/J(ri~l/u) (43) 
Ck+l = Ck + T , 

1 + 'Pk+l Pk'Pk+l 

P P Pk'Pk+l'PI+IPk 
k+l = k - 1 T p' ( 44) + 'Pk+l k'Pk+l 

3) and. the W-algorithm 
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(46) 

(47) 

(48) 

generating current M -estimates by means of minimizing sums 

~ (e i ) . 
~p iT = mm, 
1=1 

(49) 

or by solving the system of nonlinear equations 

t (e i ) L tP - 'Pi = 0, 
. iT 
1=1 

(50) 

if the derivatives are taken with respect to c. Here p(.) is 
a symmetric robustifying loss function, tP = p' (.) is a psi­
function which can be chosen according to (Huber, 1984; Stoc­
kinger and Dutter, 1987; Pupeikis, 1991), 'iT denotes an esti­
mate of the innovation scale and may be obtained simultane­
ously (Novovicova, 1987). 

On the other hand, robust recursive methods used for pa­
rameter estimation of dynamic systems (1)-(9), when assump­
tion (10) is invalid and other assumptions, i.e., (17) or (22) or 
(31) are satisfied, are not developed up till now. Therefore, in 
this paper we try to work out such recursive algorithms that 
will be efficient in the above mentioned case. We choose here 
the H -algorithm of the shape (43)-(44) as initial, because it is 
the simplest one of all recursive algorithms used for calculation 
of M -estimates ( it requires only to insert the "winsorization" 
step into the RLS). 
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Thus, it is not difficult to show that if W(z-l; h) is of the 
form (17), then in formulas (43)-(44) the vector 'Pk+I must be 
replaced by (18) and r~~l by,ek+I of the shape (19), where 
uk and xk are observations filtered according to (20). 

Suppose that W(z-lj h) is of the form (22). Then the 
first RLS, calculating the vector of the estimates Ck according 
to formulas (11)-(13), can be replaced by the H-algorithm of 
the shape (43)-(44), where the vector 'Pk+l must be replaced 
by (25) and r~~l by ek+I of the shape (24). The observations 
(Uk+I,Xk+l) in ek+l and 'Pk+l are filtered according to (26). 
The same preparations must be done when W(z-l; h) is of 
the form (31) and the RML is used. The difference is that 
the observations (uk+I' xk+I) in ek+l and 'Pk+l are filtered 
according to (33). 

It should be noted i~ respect of the estimates gk and fk 
calculated by (28)-(30) or by (35)-(39) for GRLS and RML, 
respectively, that the recursive equations, mentioned above 
can be left unchanged when the detection and correction of 
outliers in observations are used according to Pupeikis (1991). 

As initial values for the above algorithms the least square 
(LS) estimates, obtained for small data sets, can be used. The 
simulation results of the H-algorithm with Huber's t/J-function 
and an adaptive t/J-function are given in (Pupeikis, 1991). 

It can be mentioned that the recursive algorithm with 
quasilinearization of nonlinear expressions for estimating the 
parameter c when W(z-l; h) = 1 or W(z-l; h) is of the shape 

(51) 

is worked out in (Kaminskas, Pupeikis, 1974; Kaminskas, Pu­
peikis, 1975), see Fig. 6. 
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Fig.6. Recursive parameter estimation by the quazilin­
earization algorithm. noise: a - independent, 
b - correlated. 
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Here 

..... T ..... T T 
The current estimates f3k = (hk' ck) are calculated according 
to 

where 

i = 1, n, 

i = O,m, 

(53) 

(54) 

(55) 

(57) 
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is the operator of the first partial derivatives, obtained by 
using the current residual of the shape 

(58) 

where 

is a current residual nonlinear with respect to parameters; Pk 

is the scalar multiplier choosen according to 

_ { 1, if P~ax ~ 1, 
Pk - k • k 

Pmax -8, If Pmax < 1, 
(60) 

8 is some positive quantity; P~ax is the respective step in the 
direction of 

(61) 

as far as the boundary of the area D in which the stability con- . 
ditions for the parameters of transfer functions W( z-l j c) and 
W(Z-l; h) are satisfied. 

Thus, on each iteration the stability. of the current sys-· 
tem and noise filter models is guaranteed by Pk. It is necessary 
in the case of arbitrary initial conditions for the recursive al­
gorithm (53)-(61) and in a case of outliers in observations to 
be processed. 

It is shown (in Kaminskas, Pupeikis, 1974) that if 
W(Z-lj h) = 1, then the recursive algorithm (53)-(55) ap­
peares to be optimal in the sense of minimization of 
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on each current iteration, see Fig. 6a. In this case the operator 
of the first partial derivatives turns into 

(62) 

-i VT z ..... ._ 
a = 1 + Ak(Z-l) Yk+l, Z = 1,n, 

z-i 
V~ = 1 + Ak(Z-l) Xk+l, i = 0, m. 

It ought to be noted that the interesting estimation re­
sults, obtained by robust filtering algorithms in discr.ete-time 
dynamic systems with abrupt changes are presented in (Ne­
mura, Kliokys, 1988). 

4. Simulation results. The efficiency of above men­
tioned recursive algorithms was investigated by numerical sim­
ulation by means of IBM PC/AT. The noiseless sequence Yk 
was generated by the equation from the paper (Astrc5m and 
Eykhoff, 1971) 

Z-l + 0.5z-2 

Yk = 1 _ 1.5z-1 + 0.7z-2 Xk, k = 1,1000. (63) 

Realizations of independent Gaussian variables Vk with 
zero mean and unitary dispersion and the sequence of the 
second order AR model of the form 

Xk = Xk-l - 0.5Xk-2 + Vk, k = 1,1000 (64) 

were used as the input sequence Xk. A realization of the di::;­
crete AR process was generated as the additive noise accord­
ing to equation (9), where n"(z-l; h) is of the shape (22), 
G(z-l) = _z-l + 0.4z-2 and A(Z-l) = -1.5z-1 + O. 7z-2. 
Ten experiments with the different realizations of the noise 
Nk at the noise level IT}Y/lT; = 0.5 were carried out. In each 
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experiment we replaced only the observation Usoo in the fol­
lowing way 

Usoo = 1000, (65) 

and processed it together with other observations by the 
GRLS. The initial conditions for the GRLS were obtained 
using off-line GLS and the sequences Xk, Uk of simple size 
s = 200. In each experiment the estimates of the parameters 
bo, b1 , b2 , aI, a2, 91, 92 were obtained using ordinary GRLS 
and robust one based on the two H-algorithms with adaptive 
Huber's 1/J-function ( Pupeikis, 1991). 

In Table 1 the estimates ho, hI, h2' (11, (12, 91, 92 of the 
true parameters bo = 0, b1 = 1, b2 = 0.5, a1 = 1.5, a2 = 
-0.7, 91 = 1, 92 = -0.4 respectively and the variables 

5 ~ 

". (8. _ 8·)2 
8(1) = L."J=l J J 100o/c 

1 "~8~ 0, 
L."J=l J 

7 ~ 

" . (8· _ 8 .)2 
8(1) = L."J=6 J J 100o/c 

2 "~8~ 0, 
L."J=6 J 

(66) 

(67) 

calculated after processing the 1000 values of the sequences 
(Xk' Uk) in the first experiment are given. Here 81 = bo, 82 = 
£1, ~3 = Y2,!4 ~a1,~8s = a2).... 86 = 9Jx 87 = 92, 81 = 
bo, 82 = b1 , 83 = b2 , 84 = (11, 85 = (12, 86 = 91, 87 = 92. 
It should be noted that in Table 1 the first line for different 
inputs corresponds to the estimates, obtained using ordinary 
GRLS and the second one - to the estimates, obtained by 
applying robust GRLS. Further we calculate the averaged by 
10 experiments variables 

10 
"8 = ~ ~ 8(i) 

1 1O~ 1 , 
1=1 

(68) 
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10 
h = ~ ~ ~(i) 

2 10 ~ 2 , 
1=1 

(69) 

with their confidence intervals A, using classical formulas 
(Bendat and Piersol, 1971). There are obtained such results: 

hI ± A = 167 ± 8.75; h2 ± A = 967 ± 13.64; 

hI ± A = 1.56 ± 0.28; h2 ± A = 2.27 ± 1.32; 

for Gaussian input and 

hI ± A = 289 ± 14.73; h2 ± A = 146 ± 11.23; 

hI ± A = 5.06 ± 1.12 h2 ± A = 4.26 ± 1.78; 

for AR process. The first line of each input corresponds to the 
estimates wich were calculated using ordinary GRLS and the 
second line - to the estimates wich were obtained by applying 
robust GRLS. 

Table l. Estimates of the parameters and variables (66), 
(67) in the presence of outlier in observations 

bo b1 b2 aI a2 91 92 ~1% ~2% 

0 1 0.5 1.5 -0.7 1 -0.4 

Input - Gaussian process 

1.206 2.855 -0.280 1.947 -1.385 1.444 2.839 155 921 
0.028 1.030 0.423 1.602 -0.812 0.853 -0.375 0.8 1.9 

Input - AR process 

1.139 2.082 -2.271 2.093 -1.331 1.439 0.782 273 137 
0.040 1.105 0.143 1.635 -0.837 0.806 -0.365 4.4 3.3 
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It follows from the simulation and estimation results, pre­
sented here, that in the presence of outlier in observations 
the accuracy of the estimates bo, b1, b2, aI, a2, 91, 92 ob­
. tained using robust G RLS is more higher than that of the 
same estimates calculated by ordinary GRLS. 

5. Conclusions. In spite of a great variety recursive al­
gorithms, worked out for the estimation of parameters of the 
dyn'amic systems, described by difference equation (4), it is 
possible to use only several of them, e.g. the algorithm with 
quasilinearization, in the presence of outliers in observations. ' 
In this case the ordinary recursive techniques are inefficient. 
However, there also exists an approach, based on the replace­
ment of ordinary RLS in classical recursive schemes by the 
H-algorithm, and on a further substitution into its formulas 
of the corresponding vectors and residuals according to the 
estimation method to be used. , 
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