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SYSTEMS PARAMETERS IN THE
PRESENCE OF OUTLIERS
IN OBSERVATIONS
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Abstract. In the previous papers (Novovi¢ova, 1987; Pupeikis
1991) the problem of recursive least square (RLS) estimation of
dynamic systems parameters in the presence of outliers in observa-
tions has been considered, when the filter, generating an additive
noise, has a transfer function of a particular form, see Fig. 1, 2. The
aim of the given paper is the development of well-known classical
techniques for robust on-line estimation of unknown parameters of
linear dynamic systems in the case of additive noises with different
transfer functions. In this connection various ordinary recursive
procedures, see Fig.2-6, are worked out when systems’ output is
corrupted by the correlated noise containing outliers. The results
of numerical simulation by IBM PC/AT ( Table 1 ) are given.
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1.Statement of the problem. By parameter estima-
tion of real objects it is often assumed that the additive noise
acting on the output of a dynamic system has a Gaussian dis-
tribution. However, data sets, for which the Gaussian model is
often assumed, sometimes contain a small fraction of outliers
(Stockinger and Dutter, 1987). That is why the recursive clas-
sical algorithms applied in the on-line estimation of unknown
parameters, appeared to be inefficient. In this case it is neces-
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sary to work out robust on-line algorithms or to improve the
ordinary ones.

Consider a single input z; and single output yi linear
discrete-time system, which is shown in Fig. 1, described by
the difference equation

Yk = —@1Yk—1—""* —QnYk-n+boTh—r+ -+ Y T —— (1)
i |
wizim l
7 N, ‘
x| 0zt |4 y ‘
1+A(27)

Fig.1. Dynamic system with correlated noise.

Suppose that yx is observed with an additive noise N,
ie.,

ug = yk + Ni. (2)
Then
Up = — G UK—] — *** — QpUkepn + 00 Zzer + ... + b Th—r
4+ N 4+ a1 Nk + -+ anNi_n, (3)
" B(:")
, _ z 7 )z2"T -1,
Uk =7 T+ A(z) zr + W(z7"; h)és, (4)

by introducing the backward shift operator z=! defined by
z gy = z4_y1, where

€k = (1 —vE)ve +veme (5)
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is a sequence of independent identically distributed variables
with an € — contaminated distribution of the form

P(ﬁk) =(1- E)N(Ov U?) +€N(0’U§)a (6)

p(€k) is a probability density distribution of the sequence &;
vk is a random variable, taking values 0 or 1 with probabili-
ties p(yx = 0) = 1 — ¢, vg, ni are sequences of independent-
Gaussian variables with zero means and variances o2, 02 re-
spectively;

¢t = (aT,bT), a® = (ay,...,an), bT = (boy---sbm), (7)
B(z")) = }:biz"i, A(z™Y) = Zaiz"", - (8)
=0 i=1

n,m is the orders of difference equation (1), respectively;
Np=W(=""h)é 9)

is a noise filter transfer function; h is a parameter vector, 7 is
the time delay.

It is assumed that the roots of A(z71) are outside the unit
circle of the z~! plane. The true orders of the polynomials
A(z71),B(z7!) are known. The input signal z is persistent
exitation of arbitrary order according to Astrém and Eykhoff
(1971).

2. Recursive parameter estimation in the absence
of outliers in observations. Suppose that 7 = 0 in equation
(1) and € = 0 in equation (6), therefore p(¢x) = N(0,0%). In
this case, as shown in Astrém and Eykhoff (1971), to estimate
the vector of unknown parameters ¢ = (aT,b”) multivariate
on-line approaches and algorithms are worked out. On the
other hand, it is known that in the case when

W("lh) = 14 A7) (10)
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an ordinary classical recursive least square (RLS) parameter
estimation algorithm of the shape

Cr41 = Tk + Ki1€841, (11)
Fkvc €k41
K = 12
k1 Me+1+ VTer1 Tk Ve €x41’ (12)
Ve e, VT exile ),
= - A 1
Fiet (Fk M1+ Ve IieVe 6k+1) e (19)

€k+1 = Uk+1 — Ve €k+1Ck, (14)
Io=al, a>1

is used, see Fig.2. Here

~ o~ T ~ -~ T T
‘ Cr41 = (aT,b )k+1 = al,---,anybOa---7bm)k+l (15)

is the vector of unknown parameter estimates after processing
k + 1 samples;

T
Vc €k4+1 = ( = Ukyo ooy =Uk41—ns Th41y.-. ,$k+1_m) (16)

is the vector of n and m + 1 most recent observations of input
zr and output ug; 0.95 < Ap41 < 1is a time-varying weighing
factor.

It is known (Ljung, 1977) that under the above men-
tioned and some other conditions the RLS is going to have
the maximal rate of convergence.

In practice, the assumption (10) is invalid as a rule, and
the classical RLS is of little use. Therefore a multivariate set
of recursive algorithms is worked out. In the case when

W(=" b) =1 (17)
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Fig. 2. Recursive parameter estimation by the RLS.
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the recursive algorithm, based on the technique, which is de-
veloped in Steiglitz and McBride (1965), may be used, see
Fig.3. Then, in formulas (11)-(14) the vector V. ex+1 and
equation error eg41 must be replaced by

T
Ve ektr = (= ey —Uip1ons Thirse -1 Thpiom) » (18)
and
k1 = Uk — VE €x+1Ck; (19)
respectively. Here
-~ —1y1-1
u’,: = [1 +Ak._2(z 1)] Uk,
-~ —1y1-1
5t = [1+ Duale™)] o, (20)
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Fig. 3. Recursive parameter estimation by the Steiglitz
and McBridge method.

are filtered observations after k samples;
Apa(z V) =Gy, 27 o 48y, 2™ (21)
The characteristics and convergence conditions of the

above mentioned algorithm were investigated by Stoica and
Séderstrém (1981).

Let us assume that

W(z"} h) = [1+G(z"Y)] ™1 + AT, (22

where

G) =gz 4t gz, (23)
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Fig.4. Recursive parameter estimation by the GRLS.

In such a case the generalized RLS (GRLS) algorithm, see
Fig. 4, consis’ting of two RLS algorithms, is used for estimat-
ing the vectors of unknown parameters and gT = (91,---,9q)
according to (Hastings—James R., Sage M.W ., 1969). The first
RLS algorithm calculates the vector of the estimates Ty,; =
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~T T .
(2%, b )k+1 according to formulas (11)~(13), where
T ~
€k+1 = Up1 — Ve €x41Ck, (24)

T
* —_— * * * *
Vc ek+1 — (_uk,...,—Uk+l_n,$k+l,--.,xk+1_m) ) (25)

ub4r = [1+ ak(z_l)]ukﬂa

Thy1 = [1 + ak(z_l )]$k+1, (26)
Ge(z™) =Gnz™ o+ Gyt (27)
The second algorithm calculates the vector of the esti-
mates g; +1 = (1,--.,0q)k+1 using recursive equations of the
form
8k+1 = B + Ak+1Vg Ekt1€k41, (28)
Ang Ek+1VT €k+1Ak
Arr = (Ax— g ),\“1 (29
k+1 k Ner1 + VT ee31 4k Vg ert1 k+1 (29)
erx+1 = [1 4 Gr(z™)] ext1, (30)
where

Vg €k+1 = (ek+1, seey ek—q)T’

and e+ is of the shape (14).

The initial conditions for RGLS can be chosen according
to (Clarce, 1967).

Further, suppose that

W(E"5h) = [T+ FE Y+ 4], (31)

where

F(z™") = fiz™' + - + fuz™*, (32)
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Then, the estimates of vectors of the parameters ¢ and
f* = (f1,...,fx) can be calculated using the maximum like-
lihood method (ML) or its on-line version consisting of two
recursive algorithms, described in (Astrém, Bohlin, 1965), see
Fig. 5. The first recursive ML algorithm (RML) calculates the

~T
vector of the estimates ¢; = (3", b )i according to formulas
(11)~(13), where ex41 and V. e}, are of the shapes (24), (25)
respectively, with the exeption of

Ukg1 = [1 + sz(nl)] _luk+1,

.’CZ_H = [1 + F‘k(z_l )] —1.’1:1;4.1, (33)
Fe(z") = fuz™ 4+ 4 Fur ™. (39)
Thf second algorithm calculates the vector of the esti-
mates ?k = ( ﬁ - ,f,,) k using recursive equations of the, form
Tit1 = Bk + p1 Ve k416041, (35)
IIi V¢ €4 41VF ek I -1
Iy = (I — Ai., (36
k1 ( g Ai+1 + Vier 11 Ve 5k+1) e (36)
Ek+1 = [1 + f’k(z'l )]_16k+1, (37)
where
Ve ek+1 = ("'5:4-17- <o "52—x)Ta (38)
‘€z+1 = [1+fk(z"1)] _16k+1, (39)

ex+1 is of the shape (14).
The initial conditions for RML can be chosen according
to (Eykhoff, 1975; Isermann, 1974).
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Fig. 5. Recursive parameter estimation by the ML.

It is known (Van den Boom; 1981), that in a more general
case, i.e., when

W(=h) = [14+FG1+6(™)] 7 1+ AGE)] 7, (40)

the recursive algorithm'of an extended least square method
can be used, which for F((z~!) = 0 turned into GRLS and for
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G(27!) = 0 - into the RML. There also exist the algorithms
of stochastic approximation which usually are recursive pro-
cedures with a scalar step (Saridis, 1974). The convergence
of the recursive algorithms on the basis of a united approach
is investigated in (Ljung, 1977). The simulation results of
the above mentioned algorithms are given in (Isermann and
coworkers, 1974).

3. Recursive parameter estimation in the pres-
ence of outliers in observations. It has been already ear-
lier assumed that ¢ = 0. Now let us consider the situation
when this assumption is not satisfied. It is known (Novoviéova,
1987) that in both such cases, i.e., ¢ = 0 and W(z~1; h) of the
form (10) M-estimates of unknown parameters of linear dy-
namic systems (1)—(9) can be calculated using three recursive
algorithms:

1) the S-algorithm

. Prorndd(rl, /&)

Cr41 =Cp S : (41)
[¢,(r§c-21 /U)] + 99%‘+1Pk50k+1
Piok+10141 Pk
Pk+1 = Pk - *) = fi k+%T , (42)
[W'(ria/T)] T + OipPrprts
2) the H-algorithm
~ iy (k) a
~ ~ , Prort109(ry L, /7)
Ck+1 = Ck 1+ o P (43)
Pry1t EPk+1
Prok+10541 Pk
Pit1=Pi - , 44
o 1 + 90’l£+1pk90k+1 (44)
3) and the W-algorithm
~ ~ Pk80k+13'7‘(k)
Ckt1 = C + —5 kt1 (45)

[wiia] Tt ¢{+1Pk90k+1 ’
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Pror+19541 Pk
Pk+1 = Pk - (%) 1-1 T+1 ’
[“’k+1 + Cip1 PrPk+1

~ k) s~y (K k
wigy = | TSI forrigy £0,
20 for 7';:31 =0,

(46)

k -~
7”;;.21 = Uk+1 — ‘10’{+1ckv (48)

generating current M-estimates by means of minimizing sums

Zt: p(%) = min, 4 (49)

i=1

or by solving the system of nonlinear equations

> b(2)ei=0, (50)
i=1

if the derivatives are taken with respect to c. Here p(-) is
a symmetric robustifying loss function, ¥ = p'(-) is a psi-
function which can be chosen according to (Huber, 1984; Stoc-
kinger and Dutter, 1987; Pupeikis, 1991), & denotes an esti-
mate of the innovation scale and may be obtained simultane-
ously (Novoviéova, 1987).

On the other hand, robust recursive methods used for pa-
rameter estimation of dynamic systems (1)-(9), when assump-
tion (10) is invalid and other assumptions, i.e., (17) or (22) or
(31) are satisfied, are not developed up till now. Therefore, in
this paper we try to work out such recursive algorithms that
will be efficient in the above mentioned case. We choose here
the H-algorithm of the shape (43)—(44) as initial, because it is
the simplest one of all recursive algorithms used for calculation
of M-estimates ( it requires only to insert the “winsorization”
step into the RLS).
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Thus, it is not difficult to show that if W(2~1;h) is of the
form (17), then in formulas (43)—(44) the vector @43 must be
replaced by (18) and rgc +1 by ex41 of the shape (19), where
u} and z} are observations filtered according to (20).

Suppose that W(z~1; h) is of the form (22). Then the
first RLS, calculating the vector of the estimates € according
to formulas (11)-(13), can be replaced by the H-algorithm of
the shape (43)—(44), where the vector @41 must be replaced
by (25) and rfc’_?l by ex+1 of the shape (24). The observations
(4%41>Tx41) In ex+1 and @f,, are filtered according to (26).
The same preparations must be done when W(z~1; h) is of
the form (31) and the RML is used. The difference is that
the observations (u},,,Z%,;) in ex4+1 and %, are filtered
according to (33).

It should be noted in respect of the estimates g; and A
calculated by (28)-(30) or by (35)-(39) for GRLS and RML,
respectively, that the recursive equations, mentioned above
can be left unchanged when the detection and correction of
outliers in observations are used according to Pupeikis (1991).

As initial values for the above algorithms the least square
(LS) estimates, obtained for small data sets, can be used. The
simulation results of the H-algorithm with Huber’s ¥-function
and an adaptive -function are given in (Pupeikis, 1991).

It can be mentioned that the recursive algorithm with

quasilinearization of nonlinear expressions for estimating the
parameter ¢ when W(z~!; h) = 1 or W(2~!; h) is of the shape

1+ P(z71)

W(z_l; h) = 1+ R

(51)

is worked out in (Kaminskas, Pupeikis, 1974; Kaminskas, Pu-
peikis, 1975), see Fig. 6.
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Fig.6. Recursive parameter estimation by the quazilin-
earization algorithm. noise: a - independent,
b — correlated.
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Here

ny

R(z"Y) = Z riz”t Pz = z’:piz_i,

i=1

(52)

hT = (pT,rT) = (P1s+-+»PnysT1y- -3 Tn, )

AT oT .
The current estimates 3, = (h,,¢; ) are calculated according
to

Bt = By — peAkV pers1crt1, (53)
I
Ap = : 54
* Ak+1 + Vﬁ5k+1[‘kvﬂ5k+1 (54)
FkVﬁ€k+1V§£k+1Fk
iy = (e - AL, 55
k1 ( AR P V§6k+11"kvp€k+1) k1 (55)
where R o

ﬂl? = (hkve'lf ’ } (56)

h?c? = (ﬁls'“aﬁnw?l,---,?n,)k

are the vectors of unknown parameter estimates after process-
ing k samples;

Viert = (V5 , Vi, V2, Vi),

z—t

VY =11, i=1n,,
P TIBG) ’
Ve i =1
=——=——¢ 1=1,n,,
T4 Bz Y (57)
' 1 D -1 —1 N ) _
VE = +I’2\k(z ) i Ye+1, 1=1Ln,
1+ Pe(271) 1+ Ak(271)
B.o(,—-1} - —i
VE =—1+Rk(z ) z Tk+1, 1 =0,m,

1+ ﬁk(z—l) 14 .Zk(z"‘l)
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is the operator of the first partial derivatives, obtained by
using the current residual of the shape

1+ Rk(z_l)

—e 58
1+Pk(z—1) k+1, ( )

Er+1 =

where

Bi(z™1)

—2z 59
1+ A1) k1 (59)

Ek+1 = Uk41 — Yk41 = Ukl —

is a current residual nonlinear with respect to parameters; pi
is the scalar multiplier choosen according to

11 if pfnax 21,
Pr= {px,;nax _.57 if Pr,;a.x <1, (60)

é is some positive quantity; pX . is the respective step in the
direction of : :
ABky1 = A1V gert1€r+1, (61)

as far as the boundary of the area D in which the stability con-
ditions for the parameters of transfer functions W(z~!; ¢) and
W(z~1; h) are satisfied. '

Thus, on each iteration the stability of the current sys-
tem and noise filter models is guaranteed by pi. It is necessary
in the case of arbitrary initial conditions for the recursive al-
gorithm (53)-(61) and in a case of outliers in observations to
be processed.

It is shown (in Kaminskas, Pupeikis, 1974) that if
W(z=';h) = 1, then the recursive algorithm (53)-(55) ap-
peares to be optimal in the sense of minimization of

M(€r41 — €)*(€kt1 — ¢)/oi, T =(a”,b")
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on each current iteration, see Fig. 6a. In this case the operator
of the first partial derivatives turns into

V;I‘ Ek41 = (VE ,VE ), )
T z7t J—
= Ak t=1,n
P —_—
Ve Tr+1, ¢ =0,m.

T 14 A=) j

It ought to be noted that the interesting estimation re-
sults, obtained by robust filtering algorithms in discrete-time
dynamic systems with abrupt changes are presented in (Ne-
mura, Kliokys, 1988).

4. Simulation results. The efficiency of above men-
tioned recursive algorithms was investigated by numerical sim-
ulation by means of IBM PC/AT. The noiseless sequence y
was generated by the equation from the paper (Astr6m and
Eykhoff, 1971)

271 40.5272

= k — ———-
Ye = T 151 5 0722 °F 1,1000.  (63)

Realizations of independent Gaussian variables v; with
zero mean and unitary dispersion and the sequence of the
second order AR model of the form

zp = zTp—1 — 0.5z5—2 + vk, k=1,1000 (64)

were used as the input sequence zi. A realization of the dis-
crete AR process was generated as the additive noise accord-
ing to equation (9), where 1"(271;h) is of the shape (22),
G(z7!) = =271 4+ 04272 and A(271) = —1.5271 + 0.72"2
Ten experiments with the different realizations of the noise
Ny at the noise level % /02 = 0.5 were carried out. In each



206 On-line estimation of dynamic systems parameters

experiment we replaced only the observation usgp in the fol-
lowing way

U500 = 1000, (65)

and processed it together with other observations by the
GRLS. The initial conditions for the GRLS were obtained
using off-line GLS and the sequences zj, up of simple size
s = 200. In each experiment the estimates of the parameters
by, b1, b2, a1, az, g1, g2 were obtained using ordinary GRLS
and robust one based on the two H-algorithms with adaptive
Huber’s ¢-function ( Pupeikis, 1991).

In Table 1 the estimates by, b1, b2, @1, G2, G1, go Of the
true parameters bp = 0, by = 1, by = 0.5, a1 = 1.5, az =
—0.7, g1 = 1, g2 = —0.4 respectively and the variables

5 (0 —8:)2

81 = ZHE” 2’) 100%, (66)
7 -~
(8, —6;)?

sV = 21-6(7’ 2’) 100%, (67)

calculated after processing the 1000 values of the sequences
(zk,uk) in the first experiment are given. Here 6; = by, 6, =
b, 03 = bz, 04 = a1, 05 = a2y 06 = g1, 7 = g2, 01 =
bo, 62 = b1, 03 = bz, 64 = a1, 05 = G2, 05 = G1, O7 = Ga.
It should be noted that in Table 1 the first line for different
inputs corresponds to the estimates, obtained using ordinary
GRLS and the second one - to the estimates, obtained by
applying robust GRLS. Further we calculate the averaged by
10 experiments variables

_ 1 10 )
61 = ia ;61 ’ (68)
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10
L S PO
104~ 2"

=1

82 (69)

with their confidence intervals A, using classical formulas
(Bendat and Piersol, 1971). There are obtained such results:

61+ A=167T+8.75 8+ A =967 +13.64;
§1+A=156+0.28 8, +A=2.27+1.32;

for Gaussian input and

61+ A=280+14.73; 6, + A =146 +11.23;
51+ A=506+1.12 &, +A=426+1.78;

for AR process. The first line of each input corresponds to the
estimates wich were calculated using ordinary GRLS and the
second line — to the estimates wich were obtained by applying

robust GRLS.

Table 1. Estimates of the parameters and variables (66),
(67) in the presence of outlier in observations

bo by b2 ai as g1 g2 51% 52%
0 1 0.5 1.5 -0.7 1 -0.4

Input — Gaussian process

1.206 2.855 —-0.280 1.947 -1.385 1.444 2.839 155 921
0.028 1.030 0.423 1.602 -0.812 0.853 -0.375 0.8 1.9

Input — AR process

1.139 2.082 -2.271 2.093 -1.331 1439 0.782 273 137
0.040 1.105 0.143 1.635 -0.837 0.806 -0.365 4.4 3.3
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It follows from the simulation and estimation results, pre-
sented here, that in the presence of outlier in observations
the accuracy of the estimates by, by, by, @1, @2, g1, g2 ob-
‘tained using robust GRLS is more higher than that of the
same estimates calculated by ordinary GRLS.

5. Conclusions. In spite of a great variety recursive al-
gorithms, worked out for the estimation of parameters of the
dynamic systems, described by difference equation (4), it is
possible to use only several of them, e.g. the algorithm with
quasilinearization, in the presence of outliers in observations.
In this case the ordinary recursive techniques are inefficient.
However, there also exists an approach, based on the replace-
ment of ordinary RLS in classical recursive schemes by the
H-algorithm, and on a further substitution into its formulas
of the corresponding vectors and residuals according to the
estimation method to be used.
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