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Abstract. Stochastic programming problems with simple re­
course belong to problems depending on a random element only 
through the corresponding probability measure. Consequently, this 
probability measure can be treated as a parameter of the problem. 

In this paper the stability with respect to the above mentioned 
parameter will be studied for generalized simple recourse problems. 
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1. Introduction. Let (n, S, P) be a probability space, 
e = e(w) = [6(w), ... , 6(w)] be an I-dimensional random vec­

tor defined on (n, S, P), 
F( z) denote the distribution function of the random vec­

tor e(w), 
fi(X), i = 1, ... ,1 be real-valued, continuous functions defined 

on En, 
f(x) = [ft(x), ... ,fl(X)], X E En, 
9i(X, zd, i = 1, ... , I be real-valued, continuous functions de-

fined on En X El, 
X C En be a nonempty set, 
(En denotes an n-dimensional Euclidean space). 

A specific, simple optimization problem with random ele-
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ment can be introduced as the problem. Find 

1 

max { f,;g;(x, Mw)) I 

x EX: f(x) ~ ~(w) componentwise}. (1) 

If the solution x has to be found without knowing the re­
alization of the random vector ~(w), then evidently, it is nec­
essary first to determine the decision rule. It means to assign 
to the original stochastic optimization problem (1) some de­
terministic equivalent. Problems with penalty function, two­
stage stochastic programming problems and chance constrai­
ned programming problems are well-known types of the deter­
ministic equivalents. 

In this paper we shall consider a special case of two-stage 
stochastic programming problem. In particular, we shall deal 
with a generalized simple recourse problem. This problem, 
corresponding to (1), can be introduced as the following prob­
lem. Find 

1 

+ Yie./Cr;tz~~("'», ~ [hi(y;) + hi(yi)] } = 'P(F), (2) 
.=1,2, ... ,I 1-1 

where hi(y;), hi(yi), i = 1,2, ... , Z are real-valued, contin­
uous functions defined on Eb Yi = (y;, yi) E E2 , Ki(X, Zi), 
i = 1,2, ... , Z are mappings of X x El into the space of 
nonempty subsets of E2 determined by 

Ki(X, Zi) = { Yi E E2 : Yi = (y;, yi), fi(X) + y; - Yi = Zi, 

y;, Yi E Et, i = 1,2, ... ,Z}, (3) 
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E;t = {X E En: X = (XI, ••• ,Xn), Xi ~ 0, i = 1,2, ... ,n}, 
E p denotes the operator of the mathematical expectation con­
sidered with respect to the probability measure Pp(·) given by 
the distribution function F(·). 

Evidently, the distribution function F( .) can be considered 
as a parameter of the problem (2). The aim of this paper will 
be to study the stability of the problem (2) with respect to 
this parameter. The importance of this problem is well-known 
from the theory and practice of stochastic programming. 

REMARKS. 1. The problem (1) includes also linear and 
some quadratic models with random elements in the objective 
function and on the right-hand side of the constraints. 

2. If there exists a function g( x) defined on En such that 
91(X,ZJ) = g(x), 9i(X,Zi) = 0, i = 2, ... ,1, Zi EEl, i = 
1,2, ... , I, X E En, then the problem (1) is an optimization 
problem with a random element only on the right-hand side 
of the constraints. 

3. Evidently, the deterministic equivalent (2) is only ra­
ther generalized, well-known stochastic programming problem 
with simple recourse (see for example [4]). 

4. In general, it may happen that some symbols in (2) are 
not reasonable. However, this situation cannot appear under 
the assumptions considered in this paper. 

The inner problem in (2) means the following problem. 
Find 

I 

max 2: [ht(yt) + hi(yi)], 
Ni ElCi(z,zi), 

i=1,2, ... ,1 i=l 

X E En, Zi EEl? i = 1,2, ... ,1, 

(4) 

that corresponds to the possibility to correct the total ef­
fect after the realization of the random element e (w) (z = 
(Zl"'" Zl)) by a new decision problem. Namely, the solution 
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Y = (Yl,"" YI) of the inner problem in (2) can depend on the 
random element realization while the solution x E X of the 
outer problem in (2) cannot depend on this one. 

It is easy to see that the inner problem (4) is equivalent 
to 1 separated optimization problems, in particular to these 
problems. Find 

i = 1,2, ... ,1. 

Each of these problems depends only on one-dimensional ran­
dom element. More pricesely, it depends only on one compo­
nent of the vector z E E" that corresponds also to just one 
component of the random vector e(w). 

The outer problem then can be rewritten as the following 
problem. Find 

I 

m;xEF :~::>?i(X,ei(W»), 
i=1 

(6) 

where 'Pi(X, Zi) = 9i(X, zd + tPi(X, Zi), i = 1, ... ,1. 

2. Some auxiliary assertions and definitions. In this 
section we shall try to present some auxiliary assertions. First, 
we shall deal with the behaviour of the optimal value and the 
optimal solution of the inner problem. It means, first, we shall 
deal with the problem of the type (5). To this end we shall 
study the parametric problem. Find 

max [h+(y+) + h-(y-)], (7) 
yEK:(x,z) 

K:(X,z) = {y=(y+,y-):f(x)+y+-y-=z, y+, y-~O}, 

x E En, Z EEl. 

Evidently, in this case, 1 = 1, e(w) = 6(w), f(x) = ft(x), 
z E El, h+(y+), h-(y-) are real-valued functions defined on 
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El. Moreover, f ( x) and z can be considered as parameters of 
the problem (7). 

Lemma 1. Let h+(.), h-(·) be differentiable functions 
on El. If one of the following assumptions is fulfilled 

1) 

2) 

3) 

sup [h+(y+)]':s;; inf I [h-(y-)]l 
Y+EEt Y-EEt 

[h+(y+)]' ~ 0, [h-(y-)],:s;; 0 

for y -, y+ E Et, 

sup [h-(y-)],:s;; inf I [h+(y+)],I, 
y-EEt Y+EEt 

[h-(y-)], ~ 0, [h+(y+)]':s;; 0 

for y -, y+ E Et, 

[h+(y+)]' :s;; 0, [h-(y-)],:s;; 0 for y-, y+ E Et, 

and if h+(O) = h-(O) = 0, 

then the optimal solution (Y~t' y;;;'t) of the problem (7) is 
determined by the relations 

y~t = Z - f(x), y;;;'t = 0 if f(x):S;; Z, 

y~t = 0, y;;pt = f(x) - z if f(x) ~ z. 

([.], denotes the derivative). 

(8) 

Proof. Let x E En, Z E El be arbitrary given. Let us, 
first, consider the case 1). It follows from this assumption 
that there exist q+, q- EEl, c- :s;; 0 such that 

[h+(y+)]' :s;; q+ :s;; Iq-I :s;;1 [h-(y-)J'i, [h-(y-)],:s;; 0 

for every y+, y- E Et. (9) 
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It is easy to see that one of the two cases has to be valid 

a) f(x) ~ z, 
b) f(x) > z. 

We shall consider, first, the case a). It is easy to see that the 
solution given by (8) is optimal for the problem (7) (in this 
case) if and only if 

h+(z - f(x) + K) + h-(K) ~ h+(z - f(x)) 

for an arbitrary K E Et. 

Since it follows from the relation (9) that 

h-(K) + h+(z - f(x) + K) - h+(z - f(x)) 

~ q-K + q+ [(z - f(x) + K) - (z - f(x))] 

~ K(q+ + q-) ~ 0 for every K E Et, 

we have verified the assertion of Lemma 1 in the case a). 
It remains to consider the case b). In this case the solution 

given by the relation (8) will be optimal if and only if the 
inequality 

holds for every K E Et, x E X, z E El. However since it 
follows from the relation (9) that 

h+(K) + h- (I(x) - z + K) - h-(f(x) - z) 

~ q+ K + q- [(I(x) - z + K) - (f(x) - z)] 

= K(q+ +q-) ~ 0 
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for every K E Et, we have finished the proof of Lemma 1 
under the Assumption 1. Since the situation under the As­
sumption 2) is quite similar, we omit it. 

At last we shall consider the Assumption 3). Evidently, 
utilizing the technique of the proof in the previous cases we 
can see that the assertion of Lemma 1 is valid in this case too. 

REMARK. If h+(y+) = q+y+, h-(y-) = g-y- for some 
q+, q- E El, then we obtain that the relation (8) is valid if 
q+ + q- ~ O. This is a well-known assertion from the theory 
of stochastic linear programming (see for example [4]). 

Lemma 2. Let the assumptions of Lemma 1 be fulfilled. 
If h+(y+), h-(y-) are Lipschitz functions with Lipschitz con­
stants L +, L -, then for every x E En 

is a Lipschitz function of z E El with a Lipschitz constant not 
greater than max( L + , L -). 

If, moreover, f(x) is a Lipschitz function on En with the 
Lipschitz constant L', then 

max [h+(y+) + h-(u-)] 
lC(z,z) . 

is a Lipschitz function of x E En with a Lipschitz constant 
independent of z E El, and not greater than L' max( L + , L -). 

Proof. First, since according to Lemma 1, we have 

if z ~ f(x), 
if z ~ f(x), 

we can see that the first assertion holds. Further, as evidently, 
we get under the additional assumptions that 

Ih+ (z - f(x l )) - h+(z - f(x 2 )) I ~ L+ If(x l ) - f(x 2 )1 
~ L+ L'lIx l - x 2 11, 
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and simultaneously 

Ih- (z - f(x l ») - h- (z - f(x 2 ») I ~ L-If(xl ) - f(x 2 )1 
~ L-L'llxl - x 2 11 

for an arbitrary xl, x 2 E En, Z E El, we can see that the 
second assertion is valid too (11 . 11 denotes the Euklidean norm 
in En). 

The next assertion follows immediately from Lemma 2. 

Lemma 3. Let tbe assumptions of Lemma 1 be fulfilled. 
If h+(y+), h-(y-) are Lipscbitz functions and if a finite 
EFe(w) exists, tben tbere exists also tbe finite 

for every x E En. 

Proof. The assertion of Lemma 3 follows immediately from 
the assertion of Lemma 2. 

The class of strongly concave (convex) functions is rather 
important for concave (convex) programming problems. We 
shall remember here the corresponding definition. 

DEFINITION. Let h( x) be a real-valued function defined 
on a convex, nonempty set /C C En. h( x) is a strongly concave 
function with a parameter p > 0 if 

h(AXl + (1 - A)X2 ) ~ Ah(xl) + (1 - A)h(x2 ) 

+ A(l - A)pllxl _ x2112 

for every xl, x2 E /C, A E (0,1). 

The next assertion has been proved in [7]. 
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Lemma 4. Let /C c En be a nonempty, convex, compact 
set. Let, moreover, h( x) be a strongly concave with a param­
eter p > 0, continuous function on /C. If xO E /C is defined by 
the relation 

then 

for every x E /C. 

xO = arg max hex), 
xEIC 

The next assertion will deal with a sum of concave and 
strongly concave function. 

Lemma 5. Let KeEn be a nonempty, convex, com­
pact set. Let, moreover, h1(x), h2(x) be concave, continuous 
functions on /C. If, moreover, hl(X) is a strongly concave with 
a parameter (! > 0, continuous function on /C, then 

is a strongly concave with a parameter (! > 0, continuous 
function on /C. 

Proof. The proof of Lemma 5 follows immediately from 
the definition of concave and strongly concave functions. 

REMARK. The assumptions under which a quadratic func­
tion is a strongly concave (convex) one with a parameter (! > ° 
are introduced in [10], for example. 

Evidently, it follows from Lemma 1 and Lemma 2 that 

is a continuous and Lipschitz function under relatively gen­
eral assumptions. Moreover, it is easy to see that for every 
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, 
X E En, the optimal value 1P(x,e(w)) depends only on one-di-
mensional random element. Since, consequently, 1Pi ( x, e i (w )) 
and l,Oi(X, ei(W )), i = 1,2, ... ,1 given by (5) and (6) are also 
functions of this type (under relatively general assumptions), 
it is surely reasonable to study the stability of the mathemati­
cal expectation of the function depending on one-dimensional 
random element. 

3. Stability studies. In this section, first, we shall deal 
again with the parametric optimization problem (7). Conse­
quently e(w) is one-dimensional random element defined on 
(n, S, P) and F(z) one-dimensional distribution function. We 
can define for 8 > 0 two distribution functions FcS (·), FcS(') by 

FcS(z) = F(z - 8), 

FcS(z) = F(z + 8). 
(11) 

If K(Z) is a real-valued, continuous function defined on El, 
then we shall prove the following auxiliary assertion. 

Lemma 6. Let 8 > 0 be arbitrary, FcS(z),FcS(z) fulfil 
the relation (11). Let, further, K(Z) be a Lipscbitz function 
defined on El witb Lipscbitz constant L. H tbere exists a 
finite EFKCe(W)) and if G(z) is an arbitrary one-dimensional 
distribution function such tbat 

then 
IEFK(e(W)) - EGK(e(W)) I ~ 8L. 

REMARK. It is evident that there exists an inaccuracy in 
the form of the assertion of Lemma 6. The exact form should 
be IEFK(e(W))-EGK(eG(w))1 ~ 8L, where eG(w) is a random 
value defined on (n, S, P) with the corresponding distribution 
function G(z). 
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Proof. If dN > 0, dN E El, N = 1,2, .. .is a sequence 
for which dN ! 0, (N -+ 00), then we can define the points 
zi(N) EEl, i = ... ,-1,0,1,2, ... by 

zo(N) = 0, zi+l(N) = zi(N) + dN, N = 1,2,.... (13) 

Evidently, it follows from the assumption of Lemma 6 that 
there exists a finite value of the sum 

+00 
L K(Zi(N») [F(Zi+I(N» - F(Zi(N»)]. (14) 

i=-oo 

If G( z) is a continuous function, then there have to exist points 
z~(N), i = ... , -1, 0,1, ... such that 

G(zi{N») = F(Zi(N», i = ... , -1, 0,1, ... , N = 1,2, .... 

According to the assumptions it is easy to see that the asser­
tion of Lemma 6 is valid in this case. 

It reminds to consider the case of an arbitrary G(z). Ev­
idently then the points z~(N), i = ... , -1,0,1,2, ... , N = 
1,2, ... have to be chosen more carefully. We define these 
points by the relation 

z~(N) = sup {z EEl: G(z) ~ F(Zi(N»)}, (17) 

i = ... - 1,0,1,2, ... , N = 1,2, .... 
IT the points z~.(N), j = 1,2, ... ,ri' i = ... -1,0,1,2, ... , 
N = 1,2, ... fuml the relations 

Z~l (N) = z~(N), z~ri = z~+l(N), IZ~i+l (N) - z~/N)I ~ dN, 

then, evidently, it holds that 

Iz~(N) - zi(N)1 ~ 6, 

zt(N) E (zi(N) - 6 - dN,Zi(N) + 6 + dN), (18) 

IK(Z~j(N» - K(Zi(N»I ~ L(6 + dN), 
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for j = 1,2, ... , ri, i = ... , -1,0,1,2, ... , N = 1,2, .... If, 
further, Pi(N), pi. (N), qi. (N) are defined by the system 

J J 

Pi(N) = F(Zi+l(N)) - F(Zi(N)), 

P~j (N) = G(z~Hl (N)) - G+ (z;j (N)), 

q~j (N) = G+ (zi j (N)) - G(zij (N)), 

i = ... ,-1,0,1,2, ... , 

j=1,2, ... ,ri, N=1,2, ... , 

G+(z') = Hm G(z), 
z!z' 

then according to the assumptions we obtain that 

k rj k rj-l 

L L P~j (N) + L L qij = G(Z~+l (N)) 
i=-oo j=l i=l j=l 

k 

~ L Pi(N) ~ F(Zk+l(N)), 
i=-oo 

k+l ~ k+l ~ 
L LP~/N) + LLq~j ~ F(Zk+l(N) - b - dN)' 

i=-oo j=l i=l j=l 

Evidently there have to exist p~. ~ 0, if~. ~ ° such that 
J J 

1. zij(N) ~ (zk(N)-b-dN, Zk+l(N)+b+dN) 
=? p~. (N) = 0, iff. (N) = 0, 

J J 

j = 1, ... ,ri, i,k = ... ,-1,0,1, ... , 
+00 rk +00 rk 

2. Pi(N) = L L p~. (N) + L L if1. (N) 
k=-ooj=l J k=-ooj=l J 

+00 +00 
L pf. (N) = pi· (N), E iff. (N) = qi. (N), 

~-oo J J ~-oo J J 

i = ... , -1,0,1, ... , j = 1,2, ... , ri. 
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However it follows from this, that 

+00 
L K(Zi(N» [F(zi+ICN») - F(ziCN»] 

i=-oo 

+00 +00 r" 
= L K(Zi(N» L L [p~j CN) + qLj CN)] 

i=-oo k=-oo ;=1 

and also 

+00 
L K(ziCN») [G(zi+I(N» - G(zi{N»] 

i=-oo 

+00 +00 ri 

= L K(zi(N») L L [p~k(N) + qt (N)]. 
i=-oo k=-oo;=l 

Utilizing the Lipschitz property of the function IC( z) we obtain 
also that 

+00 +00 rlc 

ILL LK(Zi(N»)[p~jCN) +qL/N)] 
i=-oo k=-oo ;=1 

+00 +00 r" 
- L L LK(zi(N»)[p~(N) + qt(N)] I 

i=-oo k=-oo ;=1 

~ C 6 + dN )L for enough large N. 

However now already we can see that the assertion of Lemma 6 
is valid also for an arbitrary type of G(z). 

REMARK. Lemma 6 presents a stability interval. If we set 
IC(Z) = z, G(z) = F(z - 6) for a 6 > 0, then it is L = 1 and 
EGe(w) = EFe(W) + 6. Consequently, the interval given by 
(11) cannot be generally smaller. 
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The next auxiliary assertion follows immediately from 
well-known properties of probability measures. 

Lemma 7. Let h > 0 be arbitrary. Let, moreover, 

1. the probability measure PF(·) be absolutely continu­
ous with respect to the Lebesgue measure in El, 

2. the support Z of PF(·) be an interval (a, b) for some 
a, bEEt, a < b, 

3. 191 > 0 be a real-valued constant such that 191 ~ fez) 
for every z E Z, (f(z) denotes the probability density 
corresponding to the distribution function F(z». 

If G(z) is an arbitrary one-dimensional distribution function 
with support Z such that 

sup 'F(z) - G(z)' ~ h19 l , (18a) 

then 
G(z) E (E5(z),F6(z»), z EEl. 

Proof. Let h > 0 be arbitrary. Since it follows from the 
Assumption 3 of Lemma 7 that 

'F(z + h) - F(z)' ~ h19 l 

for an arbitrary z E Z, we can see that the implication 

holds for every z E Z. 

It follows from the relations (4) and (5) that the results 
of Sections 2 and 3 can be employed for the stability of the 
problem (2). At the end of this section we shall present a 
result dealing with the problem (6). 

To this end let Fi(·), i = 1,2, ... ,1 denote the one-dimen­
sional marginal distribution functions corresponding to F(·). 
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If 6j > 0, i = 1,2, ... ,1 are arbitrary, then we can define the 
functions Es; (Zj), F 6; (Zj), Zj E El by the relations 

F 6;(Zj) = Fi(Zj - 6i ), 

F6;(Zj) = Fj(zj + 6i ). 
(19) 

Now we can present the corresponding stability assertion. 

Lemma 8. Let 6i > 0, i = 1,2, ... ,1 be arbitrary, X be 
a compact set. If 

1. a. for every x E X, 'Pi(X, Zi) are Lipschitz functions 
of Zj E El with the Lipschitz constants LIP;, i = 
1, ... , I independent of x E En, 

b. 'Pi(X, Zi), i = 1, ... ,1 are uniformly continuous 
functions on En X El, 

2. there exists a finite EFe(w), 
3. the functions Es;(Zi), F6;(Zi), Zj E Et, i = 1,2, ... ,1 

are defined by (19), 
and if G(z) is an arbitrary I-dimensional distribution func­
tion with one-dimensional marginal ones Gi(Zi), i = 1, ... ,I 
fulfilling the relations 

Gj(Zj) E (F6;(zd, F6;(Zj»), i = 1,2, ... ,1, 

then 
I 

! m;xEF ?: 'Pi (x, ei(W») 
1=1 

I I 

-m;xEa L'Pi(x,ei(W»)! ~ L 6i LIP;. 
i=l i=l 

Proof. Since it follows from the triangular inequality and 
from Lemma 6 that 

I I I 

IEF L 'Pi (x, ei(W») - Ea L'Pi(x,ei(W»)1 ~ L 6iLIP; 
i=l i=l i=l 
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for every x EX, we can see that the assertion of Lemma 8 is 
valid. 

4. Stability results. In this part of this paper we shall 
try to utilize the results of the previous parts to obtain some 
new stability results for the problem given by the relations 
(2), (3). 

Theorem 1. Let 8i > 0, i = 1,2, ... ,I be arbitrary, X 
be a compact set. If 

1. for every i = 1,2, ... ,1 one of the following assump­
tions is valid 

a. 

b. 

sup [hi(yt)]' ~ inf I [hi(yi)] '" 
ytEEi YiEEi 

[hi(yi)]' ~ 0, [ht(yt)]' ~ ° 
for - + E E+ Yj 'Yi 1 , 

sup [hi(yi)]' ~ inf I [hi(yt)] 'I, 
-EE+ yTEE+ y; 1 I 1 

[hi(yt)]' ~ 0, [hi(yi)]' ~ ° 
for Yi, yt E Et, 

c. [hi(yt)] ~ 0, [hi(Yi)] ' ~ 0, 

for y t , y i E Et, 

2. hi(O) = hi(O) =0, i = 1,2, ... ,1, 
3. for every i = 1, ... , I, 9i(X, Zi) are 

a. Lipschitz functions of Zj E El with Lipschitz constants 
Lj independent of x EX, 

b. uniformly continuous functions on En X El, 
4. hi(·), hi(·), i = 1,2, ... ,1 are Lipschitz functions on 

El with Lipschitz constants Li, Li, 
5. Ji(X), i = 1, ... ,1 are continuous functions on X, 
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6. there exists a finite EFiei(w), i = 1,2, ... ,1, 
7. F6j (Zi), F6i(Zi), Zi EEl, i = 1,2, ... ,1 are defined 

by (19), 
and if G(z) is an arbitrary I-dimensional distribution func­
tion with one-dimensional marginal ones Gi(Zi), i = 1, ... ,1 
fulfilling the relations 

Gi(Zi) E (Esi (Zi),F6;(Zi», i = 1,2, ... ,1, Zi EEl, 

then 
I 

I'P(F) - 'P(G)I ~ L 6i max(Li,Lt,Li)· 
i=l 

Proof. Since it follows from the assumptions of Theo­
rem 1 and from Lemma 2 and Lemma 3 that the functions 
'Pi(X,Zi) = 9i(X,Zi)+1Pi(X,Zi), i = 1, ... ,1 (defined by (6» 
fulfil the assumptions of Lemma 8 (L"'i := max(Li, Lt, Li)), 
we can see that the assertion of Theorem 1 is valid. 

If we define the point x( F) by the relation 

I 

x(F) = argm:xEF L'Pi(X,ei(W»), (20) 
i=l 

then the next assertion follows from Theorem 1. 

COROLLARY 1. Let the assumptions of Theorem 1 be 
fulfilled and let X be a convex set. If for every Zi E El, Z = 
1,2, ... ,1 

max [ht(yt) + hi(yi)] 
YiEICi(X,Zi) 

are concave functions on En and if for Zi E El, i = 1, 2, ... , 1, 
I 

2: 9i( x, Zj) is a strongly concave with a parameter p > 0 func­
i=l 
tion on En, then 
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Proof. . First, it follows from Lemma 5 that 

I 

EF 2: <f'i(Z,ei(W») 
i=1 

is a strongly concave with a parameter p function on En. Con­
sequently, employing Lemma 4, Theorem 1 and the triangular 
enequality we get successively 

Now already the assertion of Corollary 1 follows from the 
relation (20), Theorem 1, Lemma 6 and the last system of 
inequalities. 

REMARK. It follows from Lemma 5 that for z = (ZI, ... , 
I 

Zl), E gi(Z, Zi) is a strongly concave function with a param-
i=1 

eter p on En if, for example, gi(Z, Zi), i = 1, ... , I are concave 
functions and for at least one i E {I, ... , I}, 9i(X, Zi) is a 
strongly concave with a parameter p function. 

Theorem 1 and Corollary 1 present the stability results 
for the deterministic equivalent given by the relations (2) and 
(3). In detail, employing these assertions, for an arbitrary 
e > 0 we can determine the stability region such that the 
error arose by the substitution theoretical distribution func­
tion by some another one (from stability region) is less than 
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this E. Further, we shall deal with the caseofa continuous 
F(z). Consequently, Kolmogorov metric can be employed in 
this case. 

Theorem 2. Let X C En be a compact set. Let, more­
over, the Assumptions 1, 2, 3, 4, 5 of Theorem 1 be fulfilled. 
H 

1') the probability measures corresponding to all one-di­
mensional marginal distribution functions Fi(Zi), i = 
1,2, ... , I are absolutely continuous with respect to 
the one-dimensional Lebesgue measure. 
We denote by fi(Zi), i = 1,2, ... , I, Zi E El probabil­
ity densities corresponding to distribution functions 
Fi(Zi), i = 1,2, ... , I, 

2') the supports Zi of the probability measures PPj (. ) are 
compact intervals, i = 1, 2, ... , 1, 

3') constants {)j > 0, i = 1,2, ... ,1 fulfil the inequalities 

and if G( z) is an arbitrary i-dimensional distribution function 
with one-dimensional marginal ones Gi (· ) for which 

PG;{W: ei(W) E Zd = 1, i = 1,2, ... ,1, 

then 

1 1 ~ max(Li,Lt,L~) 1 ) ()I <p(F) - <peG) ~ ~ {). I I sup Fi(Zi - Gi Zi . 
i=l I 

Proof The proof of Theorem 2 follows from Theorem 1 
and Lemma 7. 

We have finished the stability results cont '''ponding to the 
deterministic e<plivalent given by the relations \:.! I and (3). 
The presented results are fully determined by the behaviour of 
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the corresponding one-dimensional marginal distribution func­
tions. Surely this fact is very pleasant for practice. Moreover, 
the stability properties of these problems don't depend on the 
components dependence of the random vector ~(w). 

5. Applications to empirical estimates. It follows 
from the previous parts of the paper that the statistical be­
haviour of the generalized simple recourse problem given by 
the relations (2), (3) depends on the probability measure only 
through the corresponding one-dimensional marginal distribu­
tion functions. Consequently, the empirical estimates of the 
optimal value and the optimal solution can be based also on 
one-dimensional marginal empirical distribution functions. 

Let for i = 1,2, ... , I, ~f(w), k = 1,2, ... be a sequence 
of random values defined on (0, S, P) such, that for every k = 
1, 2,~ .. the random value ~f(w) has the same distribution func­
tion as the i-component ~i(W) of the random vector ~(w). We 
denote by the symbol Fti(Zi) = Fti(Zi,W), Ni = 1,2, ... the 
empirical one-dimensional distribution function determined by 
~Hw),~r(w), ... ,~f'i(w), i = 1,2, ... ,1. 

Evidently, under very general conditions 

I 

m:x ~ EFti<Pi(X'~i(W)) 
&=1 

estimates the theoretical value 

I 

m:x EF L <pi(X'~i(W)). 
i=1 

The next theorem follows immediately from Theorem 2. 

Theorem 3. Let X be a compact set. Let, moreover, tbe 
Assumptions 1, 2, 3, 4, 5, of Theorem 1 and tbe Assumptions 
1',2',3' of Tbeorem 2 be fulfilled. H Ffi(.), Ni = 1,2, ... are 
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one-dimensional empirical distribution functions determined 
by~l(w), ... ,e\[i(w), i = 1,2, ... ,1, tben 

p{ w: I m?Ep t. 'P; (x, e;(w)) 

I 

- m? ~?F;";'P;(x,e;(w))1 > t} 
I 

.;;; ~ p{ w: sup iFr;(z;) - F;(z;)i 

iJi t} 
> + - -1 ' max (Li, L j ,Li ) 

for an arbitrary t > 0, Ni = 1,2, ... , . 

Proof. The assertion of Theorem 3 follows immediately 
from the assertion of Theorem 2 and elementary properties of 
probability measures. 

If, moreover, for every i = 1, 2, ... , 1 the random sequence 
et (w), k = 1,2, ... is a sequence of independent random val­
ues, then we can employ Kolmogorov's limit theorem. 

Theorem 4. Let the assumptions of Theorem 3 be ful­
filled. Ifforeveryi = 1,2, ... ,1, random sequence {et(W)}h:l 
is a sequence of independent random values, then 

I 

.Nli!Poo p{ w: vminNil m,:x EF ?= 'Pi (x, {i(W)) 
.=1, ... ,1 z=1 

I 

- m? ~ Ep;'" 'Pi (x, e;(w)) I > t} 
I [ (Xl iJ.t 2 

~ ~ 1 - k~(Xl (_l)k exp { - 2k2 (max (Lj, ~t, Li)J } 
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for an arbitrary t > O. 

Proof. First, it follows from Theorem 3 that 

I 

p{w: JminNilm;x EF ?:cpi(X,ei(W)) 
&=1 

I 

- D1f' 8 EF;,,;'P;(X, e;(w)) I > t} 
I 

~ LP{ w: vIM sup IFti(Zi) - Fi(Zi)1 
i=1 

for an arbitrary t > O. 
However, since it follows from Kolmogorov's limit theorem 

that 

+00 
~ 1- L (_1)k exp { - 2k2(t'?} 

k=-oo 

for an arbitrary t' > 0 and every i = 1,2, ... , I, we can 
see that the assertion of Theorem 4 is valid. 

REMARK. Evidently, the similar assertions to Corollary 1 
for the optimal solution can be presented also in the case of 
Theorem 2, 3, 4. 

6. Conclusion. The stability of a specific type of stochas­
tic programming problem has been discussed in the paper. In 
detail, it was the generalized simple recourse problem. The 
stability has been considered there with respect to the distri­
bution function space. It was shown that this problem can 
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be transformed to several one-dimensional cases. Namely, the 
stability of the original problem is practically determined by 
the behaviour of one-dimensional marginal distribution func­
tions, from mathematical point of view. Evidently, this fact 
is very "pleasant" for practice. Surely to work with one­
dimensional probability measures is much more simple, then 
to work with general case. Obviously, it appears also in the 
applications to the empirical estimates. There Kolmogorov's 
limit distribution can be utilized. 

The similar access has been already taken by Growe and 
Romisch in [9] for the linear and quadratic recourse case. How­
ever there another type of metric in the space of distribution 
function has been employed. Surely, it would be valuable to 
compare both these results with the ones achieved by a simula­
tion method. However this problem will not be more discussed 
in this paper. 
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