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HOW TO CHOOSE A PIVOT ELEMENT IN 
SIMPLEX METHOD? 
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Abstract. New computa.tiona.l rules ofthe simplex method are represented. 
They differ from classical rules in the sense that the column corresponding to the 
objective function is also transfo.rmed and first the pivot row and then the pivot 
column is determined. In this case the most nega.tive element in pivot row can be 
chosen for pivot element. In evaluating procedure systems equivalent to systems 
appearing in classical simplex method are used and theoretically they determine 

• the-same sequence of basic solutions. The calcula.tions are more precise due to 
such choice of pivot element and it is assured also by the results of test-problems. 

Key woz:da: pivot element, simplex method, ill-conditioned problem of 
linear programmiJl&. 

1. Description of the algorithm of the .implex method. 
Let us consider the linear programming problem in the following 
form 

(1) 

z - max: 
z~O. 

The problem obtains such form after the Oth step when from the 
last row corresponding to the objective function the (m+1)th vari~ 
a!::>le has been entered to the basis (see Example 1). Assume that 
QmHn+1 > 0 and 6mH = 0 (see Remark v below). Describe the 
algorithm SIMP for solution of the problem (1) with the simplex 
method. Assume that A is an (m + 1) x (n + 1) matrix and b is an 
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(m + 1) vector. Use for the transformed elements of A. and 6 the 
same notations. 

Algorithm SIMP (A,~,a:, z,e, m, n). 

1. Determine the initial basis. 
2. Iniija.ijze z. :::: O. 
3. Assign to th.e in4ex of the pivot row.the value I = m + 1. 
4. Find. RE ': . min. a,s:;:: O,l-. 

1=1 •...• 11 

5. If -£ ~ RE then go to step 13. 
6. Enter variable %l- into the basis. 
7. Make Gauss eliminations with the pivot element Bit. 

:' ~ 

8. Find min 6;/ai~+1 = 6,ja'n+1' 
Cli.·H>C 

9. Delete the variable" 1:;. corresponding to the lth row from 
the basis. 

10. If 1li,,+1 ~ e, i:;:: 1; ... , m + 1, then the linear programming 
problem has no fiIrlte 'optimal solution, stop. 

11. Let z ="1/0'.+1" 
12. Go to step 4-
13. Find the optimal solution 

14. Stop. 

,REMARKS. 

i) at each step at least one of the basic variables is eq~al to O. 
Contrary to the ordinary simplex meth<>ti z is the only nonhasic 
variable which value differs from O. 

ii) at every step the pivot element is negative (according to the 
step 8 in pivot row Oin+l > 0). " 

Hi) in non-degenerate case the classical simplex method and 
the method proposed here determine the same sequence of basic 
solutions, ~cause their estimates differ according to a constant 
coefficient. 'For instance, in the exa.mple propOsed in this article 
a. new sequence of estr~ates is" evaluated according to the formula 
~ = Aa - A../3 and in the classical simplex method according to 
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the formula At -3Aa, the coefficient is -1/3 .. Therefore, the method 
proposed in the present article and the classical simplex method 
are two different descriptions of nne method and there is no need 
to prove statements and criterion established in this article. 

iv} as in our method pivot element is most negative element in 
the pivot row then it enables us to solve the problem more precisely 
compared with the classical method, see, e.g., the example with 
Hilbert matrix. 

v) in the description of SIMP it is assumed that the initial 
value of the objective function zO = O. If this assumption is not 
fulfilled the SIMP must be slightly changed, see, e.g., Example 2. 
However, it is more convenient to shift z then assign ZO = -bm+l = 0 
and after finding the optiI!lal solution change the maximum valUE: 

z· by the same quality. 

vi) if all the elements in the column corresponding to the vari­
able Z 4in+l ~ 0, i = 1, ... , m + 1 then the objective function is 
unbounded. 

EXAMPLE 1. 

.%3 +.%e:: 1 

.%1 + 2.%2 + 3.%3 = z - max 

.%~O. 

The solution of this problem with the new rule for choosing 
the pivot element is presented in the Table below. . 

At the initial step in addition to the basis .%4 • .%5. Z6 one more 
variable is entered. The last row which corresponds to the otijective 
function is chosen for the pivot row, pivot element is -C3 = -3. First 
the variable leaving the basis and then variable entering the basis 
are determined. At the first step let us express the basis variables 
through z; 

.%4 = 2 - z/3, 'zs = .. - z/3. Ze = 1 - z/3, Z8 = z/3. , 
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'lable 1. 

Step J:l J:2 J:a J:4 J:5 J:& z " -1 1 1 1 0 0 0 2 
0 1 1 1 0 1 0 0 4 

0 0 1 0 0 1 0 1 
-1 -2 E!J 0 0 0 1 0 

------- . - - -
-4/3 1/3 0 1 O· 0 1/3 2 

1 2/3 1/3 0 0 1 0 1/3 " -1/3 1-2/31 0 0 0 1 1/3 1 
1/3 2/3 I, 0 0 0 -1/3 0 

- - - .. - - - - - .. -
1-3/21 0 0 1 0 1/2 1/2 5/2 

2 1/2 0 0 0 1 1/2 1/2 9/2 
1/2 1 0 0 0 -3/2 -1/2 -3/2 

° 0 1 0 0 . 1 0 1 - - . - ------
1 ° 0 -2/3 0 -1/3 -1/3 -5/3 

° 0 ° 1/3 1 2/3 2/3 16/3 
3 0 1 0 1/3 0 ~/3 -1/3 -2/3 

0 
.. " . 1 . 0 0 I 0 1 .. 

- - - - --1.-'- .. '. - - .. - - -

For the initial basiS z == zo= 0. If z increases and z = 3 then J:& = 0. In 
general, the variabie leaving the basis is determined by the minimal 
ratio of the elements of two last columns, ta.kinginto &ccount only 
positive elements of the z-oolumns. At the first step J:sleaves the 
basis, 'the estimates of variables .&re on the row corresponding to 
J:s. As z has there a positivec:oefticient then for finding a. new pivot 
element it is necessary to find the minimal element in this row, Le., 
ClS2 = -2/3. At the ~nd step the minimal ratio of the elements 
of the two last columns is on the first row, z is increasing up to 5, 
J:41eaves the basis and J:l enters the basis, the first row is pivoting. 
At the last step z increases up to 8, J:5 = (16-2z)/3, the second row 
is pivoting and as all the coefficients in this row &re nonnegative 
then the solution f01tnd is.,;1>ptimal, J:. = (1,2,1,0,0,0)7, z· = 8. 
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Optimality criterion: all elements in the pivot row are non­
negative. 

vii) let us consider now an example on two-phase simplex 
method. 

EXAMPLE 2. 

%1 + 2%2 - %3 == 4 

%1 + %2 + %4 = 6 

-%1 - 3%2 = :: - max 

z~O. 

To the first restriction we add an artificial bask va.riable 1t5 

and use the objective fundion -%5 :::: Z - max 
After elimination 2:5 from the objective function the initial 

value of z at the Oth step ZO = -4 and 1t2 will enter the basis. 
At the first step z increases up to 0, 2:5 is leaving the basis and the 
first phase of the simplex method is completed. In the table the 
column corresponding to 01:5 and the first row a.re deleted. The first 
row is replaced by the coefficients of the objective function of the 
initial problem and the coefficients of the z column are changed. 
At the 2nd step in the first row of the table It, is deleted. At the 
3rd step an initial solution %2 = 2, 1t4 ::: 4, :::It -6 is found. At the 
4th step %2 = -4 - Z, %4 = -2 -:, 2:1 ::: 12 + 2::, ~ incteases up to 
-4, the third row is the pivot row. The criterion of optimality is 
fulfilled z· = -4, %2 == 0, 2:: = 2, %i = 4. 

There is no feasible solution.! if after the first phase the tllaxi­
mum of the objective function is nega.tive. 

viii) To find an initial basis one can use also the algorithm 
VRMA (Ubi, 1991a), where 'orthogonal transformations of c<?lumns 
are used instead of Gauss eliminations. This algorithm takes into 
account also tbe coefficients of the objective function and so it may 
occur that an initial solution is optimal. 

ix) as in the method proposed negative pivot elements and 
pivot row is determined before determining the pivot column so in 
the case of a degeneracy basis there appear differences compared 
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Table 2. 

Step %1 %2 %3 % .. %$ Z 6 

1 2 -1 0 1 0 .( 

1 1 0 1 0 0 6 
0 0 0 0 1 1 0 

- - - - - -
1 2 -1 0 1 0 .( 

0 1 1 0 1 0 0 6 

-1 @] 1 0 0 1 -4 
- - - - -

0 0 0 0 1 1 0 
1 1/2 0 1/2 1 0 1/2 4 

1/2 1 -1/2 0 0 -1/2 2 . - . . ......... -
1 3 0 0 1 0 

2 1/2 0 1/2 1 0 4 
1/2 1 -1/2 0 0 2 

- - - - - - - 0 • '0 

8Lj], 0 3/2 0 1 -6 
3 1/2 0 1/2 1 0 .( 

o 1~'i ~ ! _ 1.1 • -1/2 o - 0 2 
- .. . . . - . - - - ..... 

1 0 -3 0 -2 12 
4 0 0 2 1 1 -2 

0 1 1 0 1 -4 
- . . . .. - ..... 

with the classical method. Solving problems with the degenerate 
basis cycle was never arised if the following rule was followed: if at 
the 8~h step the pivot row is not uniquely determined then divided 
elements of these rows with respective Gin+l and take for a pivot 
row the lexicograhically minimal one. 

2. Des,cription of the algorithm of revised simplex met­
hod. In the following table the solution of the first example with 
the revised simplex method is presented. It has begun from the 
system at the first step (when %3 is entered the basis). 
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'DIt.ble I. 

Step , p·-l 
&"+1 A 

CI.f 2 1 0 0 0 1/3 1/3 
Cl5 4 0 1 0 0 1/3 1/3 

1 Cle 1 0 0 1 0 1/3 1~2/31 
CIa 0 0 0 0 1 -1/3 2/3 

.. .. - ... .. .. - -
CI.f 5/2 1 0 1/2 0 1/2 [-3/il 
05 9/2 0 1 1/2 0 1/2 1/2 

2· Cl2 -'-3/2 0 0 -3/2 0 -1/2 1/2 
as 1 0 0 1 1 0 0 

- - - - - - - ...... .. - -' ... - - - ... 
-5/3 -2/~ 0 -1/3 0 -1/3 

3 16/3 1/3 1 2/3 0 2/3 
-2/3 1/3 0 -4/3 0 -1/3 

1 0 0 1 1 0 
... ... ... - ... ... ... .. ... .. ... .. .. .. .. ... -

Here p-l denotes the inverse of the basic ma.trix, ""+1 the (n + 
l)th column of the transformed matrix A (usually ~+1 i. not used 
in the revised simplex method), a" the column corresponding to 
the variables entering the basis, A :: p-Io", see the description 
of the algor\thm below. At the first step accordin, to the 11th 
step of the algorithm MSIMP for nonbasic varia.bles find P3-lal :: 
-1/3, P3-1a~ :: -2/3. Therefore, into the basis instead of 11:6 the 
variable 11:2 is entered. At the second step Pilal :: -3/2, Pila6 :: 
1/2 instead of %4 the variable %1 will enter the bMi •. At the third 
step the criterion of optim~ity is fulfilled, optimal values of the 
vUiables~ are found according to the formulas introduced .at the 
17th step. 

Describe the algorithm MSI¥P for solving the problem (1) 
with revised simplex method. Besides (rII + 1) x (n + 1) matrix A 
and (m + 1) vector ban (m + 1) x (m + 1) ma.trix p-1 which is tM 

L 

inverse of the basic ma.trix P and (m + 1) vector .\ are needed. 
Assume that 4m+h,+l > 0, "",+1:: O. 
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Algorithm MSIMP (A,b,P-l ,A,z,m, n,z,t). 

1. Find an initial basis. 
2. Let z = O. 
3. Evaluate RE = . min a"'H; = a...+u-,=l, ... ,ft • 

~. If t: <; RE then go to step 17. 
5.· Enter Zt into the· basis. 
6 .. Fulfill Gauss eliniinations with the pivot element a...+u-
7. Find min hi! ainH = hz/ a'nH-

Oi,,+I>' 
8. Delete the variable Zi, corresponding to the Ith row fr:om 

the basis. 
9. If atnH 't, i = 1,. __ , m + 1 then the objective function is 

unbounded, stop. 
10. Let z = bl/a,n +1' 

11. Find RE = ~nP,-laj = al}: which is evaluated for all non­
J 

basic columns aj, j = 1, _ .. , n and where p,-l denotes the 
Ith row of the matrix p-1. 

12. if -e <; RE then go to step 17. 
13. Enter:l:l: into the basis. 
14_ Evaluate the vector A = P-1 4J:. 

15. Fulfill Ga,¥s eliminations with the piyot element a,l: = Al 
1 t ' to b, p- 'I «n.Jo1-

16. Go. to step 7 .. 
17. Find the. optimal solution 

18. Stop. 

REMARK. Contrary to the commonly used version of the sim­
plex method here estimates basiflg on dual variables are not calcu-

- ~ 

lated. They are found at the 11th step with the aid ef the mverse 
matrix taking into. acceunt that the place ef estimates changes at 
each step. 

3. Numerical· experiments. Theprogr&m of MSIMP llas 
been written in FORTRAN-n for ES-I055M with VM. For all 
variables dou1Ve-ex.a.ctne~"i was used_ In both of exa.mples t ~ 10-15• 
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EXAMPLE 3. Let us consider t\ linear programming problem 
with Hilbert matrix, Qij = 1/(i + j), bi = E~1 1/(1: + i), Cj = hi + 
l/U + 1), i,j = 1, ... ,·m. Inequality cor..,traints are transformed to 
equality constraints with the aid of slack variables which form an 
initial basis. The optimal solution ~; = 1 was found for m = 8 
with the exactness .6 = 10-4 . At the 11th step of MSIMP the pivot 
element RE::: -0.5.10-9 • For m = 9 the same quantities were A :: 
10-3 , RE:: -0.4.10- 11 , for m :: 10 .1. :: 10-2, RE:: _0.2.10- 12 • The 
maximum value of the'objective function for m = 11 is found with 
exactness 10-14 but at the 10th step of MSIMP the running values 
of z descreases due to miscalculations and it is impossible to solve 
the'problem at all. Analogously, for m> 11 it is impossible to find 
:1:$ although values of the t)bjective functions are determined with 
great exactness. 

EXAMPLE 4. 

(1 + t)Z1 + :1:2 + %3 + :1:4 , 4 + t 
Z1 +Z3 +Z4 ~ 3 

:1:1 + % .. ~ 2 

:1:1 + :1:2 + %3 + :1:4 = Z ...... max 

:I: ) O. 

The slack variables :1:5, %6,:1:7 belong to the initial basis. For t = 
10-10 with this algorithm the optimal solution :I: = (0,0000009572; 
2,000 0000001; 0,000 000 0000; 1,9999990418; 0,000 000 0000; 
1,000 000 0000; 0,000 000 OOOO)T was found. It is close to one of 
the optimal solution z· :: (0,2 + t, 0, 2,0,1, O)T. 

Therefore, with MSIMP one can solve problems more precisely 
than many other widely know program packages but still not so ex­
actly as VRMSIM (Ubi, 1991b). For example, well-know programs 
solve the problem with Hilhert matrix only for m in the intervaJ. 
from 4 to 8. Solving problems with VRMSIM the grea.ter exactness 
is obtained due to greater labour consuming. Besides, basic matrix 
is used in the triangular form and evaluating simplex-ta.bles only 
orthogonal transformations a.re used. 
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