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Abstract. The vticle is dedicated to Newton's method for solving nOlI· 
. linev equaiion systems. The KiLDtorovich convergence theorem lIIlSumes that 

the derivative of the system function is Lipschitz COlItinUOUS. Our purpose is to 
provide error estimates in the case of a HOlder continnous derivative. 
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1. Introduction. The problem we discuss is to find solutions 
of the sys~ems of equation 

F(z) = 0, (1) 

where F:D eR" L ea is a given operator. The New~n's iterates 
are 

(2) 

where, F' denotes the G·derivative. The use of the Newton's it
eration is considered as a standard numerical solutions. The con
vergence analysi~ has a long history. In 1948 Kantorovich gave a 
famous convergence theorem. A later proof, is due to Ortega and 
Rheinboldt (1970): 

Newton-K~ntorovich Theorem. Assume tbat F: DC R" 
- R" is F -differen tiable on a con vex set Do C D and that 

(3) 
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Suppose that there exists an z°-e Do <sucb tbat 1IF'(zO)-lll' 13 and 
Q' = P"IP , 1/2, wherep ~ IIF'~zoy-lF«<O)II.Set 

t· :: (.B"I)-1[1-{1 ..... ~2Q')lft] ,t-.z: (13"1)-1 [1"+(I'--2Q)I/2], 

l.ndassume ·thaiSfzo /«')e ·£)0 .Jplf-f!n :the Newton iterates ate viell
defined,remain inSfzo ,:1*), ia.n.dtoii:ve'F.ge~to;a -s61titjon:z· 'of F(z) = 0 
whicb is .unique in S(;r°,:IU)nDo .. Mdreover,tbeeirotestimate 

(4) 

holds. 

We note that the error eStimates (also in later versions) sup
pose the condition of Lipsc;hitzcontinuity. 

Counter example. For the following system 

f zl+~=4, 
1. ~+Z2 =8 

(5) 

the Lipschitz inequality (3) doesn't holds for the Euclidea.n norm. 
Proof. If z = (4, n-2 ), y == (4,0), then (3) holds if"l·~ 3/2n, which 

is impossibie for all n ~ O. 
Note. Instead of (S},'we :ha.Veonty & "'older condition: 

1IF'(z) - F'(y)II' -"1/111: ;,,:yl('., \'-%,111: -Do, 0 ,,, ~ 1 (6) 

with p = 1/2, "I = 3/2. 
In the case of only HQlder contihtt'ous derivative, Newton Al

traction theorem {Ottegaand Rh'eh!tbtMdl, 1970) states that, if:z· 
is a point of attraction of the itera:tmn, then we have superlinear 
convergence. 

We did not find sOmethiHg aoolit the ~rrot estimate' of th'e 
iteration applied to a. systehl nke (5).· There are several refer
ences (Anselsone and Moore, 1966; Dennis, 1969; Gragg and Tapia, 
1974) about some generalizations of Kantorovieh theorem, however, 
which assUme sontetonditions for the second derivative. 

. The purpose of this paper is to find formulas of the error esti
mate for Newton method in the case a Bolder continuous d~nva.tive. 
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More precisely, we try to generalize the Kantorovich and Mysovskii 
theorems: 

Newton-Mysovskii Theorem. (Ortegaand Rheinboldt, 1970). 
Suppose that F: D C R:' - R:' is F-difIerentiable on a convex set 
Do cD and tbat for each z e Do, F'(z) is nonsingular and satisfies 
the Lipschitz condition (3) and IIF'(z)-111 ~ fJ, Vz e Do. If ZO e Do 
is such that IIF'(zO)-l F(zO)" ~ p and Q = fJ7P/2 < 1, as well as 
- ° S(z • "0) c Do, where 

00 

"0 = pE Q2i_l, (7) 
j=O 

then the Newton iterates (2) rem.un in 8(zO, ro) and converge to a 
solution z· of F(z) = O. Moreover, the following estimate hold 

(8) 

where 
00 . 

ec = ~ 2: (Q",t-1 < Q[p(1 - Q2">rl, k = 1,2,.... (9) 
P i=O 

The results' are stated in Theorem 1 and 2. For the case of 
Theorem 1 the 'proof follows the way of .~he. above theorem, but 
in the case of Ort~ga"'s proof for Kantorovich theorem the analogy 
method do not wbrk; . 

In the case; = '1 the given formulas provide the classic esti- . 
ma.tes. 

2. Main resuits. We propose the following generalization of 
the N~wton-Mysovskii theorem: 

Theorem 1. Suppose that F: Dc R:' - R" is F-difIerentiable 
on & convex set Do C D and that for each z e Do, F'(z) is non
singular and s~tjsfies the Holder condition (6) with p < 1 and 
IIF'(z)-ll1 ~ fJ, Vz e Do- If:eo e Do is such that IIF'(zO)-lF(zO)II < p 
and Q'= ;.hfJ7P' < 1, as well as 8(zO, "0) C Do. where 

00 

"0 = P La«r+!Y-l)J,. 
. j=O 

, 

(10) 
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then the Newton iterates (2) remain in S(ZO, ro) and converge to a 
solution z· of F(z) =0. Moreover, the following estimate hold 

where 

(12) 

For the Kantorov:ich theorem, we find & partial generalization: 

Theorem 2. Assum~ that F:D C K' -+ K' is F-differentiable 
on a convex set Do C D and the inequality (6) holds for p ~ l. 
Suppose that there exists an Zo E Do sucb tbat 1IF'(zO)-l" ~ fJ and 
er ~ fJ'YP" ~ ;fr, wbere p ~ IIF'(zO)-lF(zO)1I and S(zO, (fJ"Y)-l/p) C 
Do. Then tbe Newton iterates (2) are well-defined, remain in 
S(ZO, (fJ"Y)-l/P), and converge to a solution z* of F(z) = O. More
over, the error estimate 

holds. 

We apply the last theorem to our counter example., 

Example. In the case of system (5), the error estimate is 

for an ZO 8uch that 

holds. 
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3. Proofs. We need the following earlier :results..of Ortegaand 
Rh~nboldt (1970). 

The mean~Valuetheorem. i'or 'functiOlUl 'with Bolder 
continuous F-derivative. Let 'F: DC K' - Jl'lbe continuously 
differentiable on a convex set Do C D and suppose that, for con
stants 7 ~ 0 and .'P~ O,F' .satisfies (6). Then, -for &DYoZ.-!I'e Do. 

UF, - F%- F'(z)(,-;%)U <1": 1 11,-%11'*1, (14) 

Perturbation Lemma. Let A,Ce L(R") and.assumetbat A 
is invertible, with IIA-I II Et p. If itA - CIIEt7 '&lid P7 < I, then C is 
aisoinverlib1e, alld 1Ie-111 Et ·P/(l- 7P). . 

DEFJNITION~ Let {zl}be.any sequence.in E'. Then .asequence 
{tC} for which 

holds is 8. majorizing sequence for {zl}. 
Note tha.t any majorizingsequence is necessa:cily monotonica.lly 

.' . , 
increasing. r 

Majorizing ~uenCes a.rise assohrtic:ms of cerl&in nonlinea.r 
difference equatic/.ns) The idea. i~ given in the following two lemma.' 

I 

~ Lem.ma 1. ForG:D C Jl'l- R", suppose tbat there exists all 
monotone functii>n.4I: (0, 00) - (0.00) sud tbat on some set Do C D 

ass~.~e, further, that for so~e zo E Do the iterates zl = Gl(zO), 1 = 
1,2, ... remain in Do and the sequencet. defined by 

converges to t· < 00. Then lim zll = z· exists ud tbe estimate 
II-oq 

(16) 
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bolds. Moreover, if z· E D and G is continuous at z·. tben z· = Gz*. 

If an inequality of the form 

IIG2(z) - G(z)\! , </I (lIG(z) - z)lI. IIG(z) - zOIl, Uz - zOIl}, 
(17) 

Vz, G(z) E DD 

holds, Lemma 1 extends to a. more general setting: 

Lemma 2. Let G: D C K' - K' &Dd </I: J1 x J2 X J3 C It' -
[0,00), wbere each Ji is an interval oftbe forl11 [0,0], [0,0), or [0,00) 
and </I is monotone in eacb variable. Suppose tbat there is a set 
Do C D and an Zo E Do sucb tbat (17) bdds wbenever %,G(z) EPo, 
and tbat witb to = 0, t1 ~ IIzo - G(zO)1I tbe 801ution of tbe difference 
equation 

tk+l - tk = </>(tll; - tk_1. tk. tk-1), k = 1,2, ... 

exists and converges tot* < 00. Finally, assume either tbat 8(xO, t-) C 

Do' or tbat 8(zO, t*) C Do and tll; < t* for a.ll1e ~ O. Then tbe iterates 
zk+1 = G(zk), l: = 0,1, ... are well-defined, lie in 8(zO, t*), converge 
to some z* E 8(zO, t*), and satisfy (16). 

Proof of Theorem 1. We define Gz = z - F'(z)-lF(z). Then 

IIG2(z) - G(z)1I ~ PUF(G(z» - F(z) - F'(z}(G(z) - z)11 
1 

" p+ I P-rUG(z) - zll'+1, 

and the associa.te difference equa.tion is the following: 

h+1 - tk = !P-r(tk - tl_1,+1, to ::::0, 11 = lA, le = 1,2, .... 
p 

We show by induction tha.t 

t1+! - tJ: , IAOi~+!)·-l)/', le = 0,1,... (18) 

holds. For le = 0 tha.t is correct becaUIe t1 - to :: lA __ lA. If it holds 
for k = j - 1, then ' 
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Inequality (18) provides 

Now the convergence statement follows from Lemma 1. 
In order to obtain an error estimate, we define 0'0 = fJ7 /(P + 1) 

and from 

IIzi+1 _ zill ~ O'ollz* _ z*-lljP+1 

:1it O'O(ti - tt_d'O+l , O'O~lO'«P+1)·-U>+l»/p 

results 

1:+".-1 m. , 

!jz.l;+m - zlol/' I: nzi+1 - zill , E a~(P+1)'-I)lpllzl - zl:-ln(P+1)' 

;=1: ;=1 
<XI, , 

~1I:.e1: - zl:-l UP+l E Q~(P+1)'-l)/p(tk - tl:_d<p+l)' -0>+1 ))/~. 
j:1 

Since 

the proposed inequality holds. 
proQf of Theorem 8. Set Dl = 8(zO, (h)-l,p) n Do. Then for 

Z E DJ we have 

Ur(z) - F'(ZO)U' 'Yllz - zOIl" < ~, IIF'(:O)-IJr 

Thus, the perturbation lemma. shows that F'(z) is nonsingular for 
all :.: E D1. a.nd tha.t 

1F'(:r:)-:lU , 1- prl~ _ :.:0l!'" "If: E D1, 
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so tha.t G(z) = z - F'{Z)-l F(z) is well defined on D1. 
If %,G(z) E D11 it follows from the mean-value theorem that 

UG2(z) ... G(z)B = ~F'(G(z»-1 F(C:z»11 

= DF'(G(z»-I[F(G(z» ... F(z) ... F'(z)(G(z) - z)" 

1 .....<..!JII"-G~( z.,..:..)_-_z..u...II"_+_1 _ 
~ -p +-1 P'Y 1 ~ ~'YIIG(z) _ zOllp 

= ~ (IIG{z) ... zll, IIG(z) ... zOIl), 

where 
. 1 sP+1 

~(s,t)= p+l~"'l ... f3;tp' 

We now apply Lemma 2 to the difference equatior: 

We now show that {t~} is an increasing and bounded sequence .. 
in fact that 

(19.1; 

(19.2) 

(19.3) 

holds for .t = 0, 1, .... We use the induction method. The inequali
ties clearly hold J: = O. We assume they hold for J: - 1. 

First we consider the inequality (19.1). It follows from (19.3) 
for i == 0(1).i: - 1 that 

. i-I 1.:.. Q' 
tl ~p+ ... +pa =P-1--' 

-Q 
(20) 

From the recurrence relation for tHlwe obtain the following equiv
alent form for (19.1): 

z:t! . 

(~'Yl; (t, - tt_l)"+1 ~ (l-httJ[l- (~'Y)l/'t,]. 
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It is possible to consider the following more restricted inequality, if 
we consider the definition of a, (20), the condition that p ~ 1, and 
(19.3) for k -1: 

a(Ir-1R>Halr-1H/" <; [1- a Cl-=-:1),,] [1- 0'1/, 11-=-:t]. 
This follows from 

With this (19.1) is proved. 
From (19.1) for I: and (19.2) for I: -1 we notice that 

fJ-y (it - ti:_lyH 
tlrH - tlr = --1 1 Q...,+' > O. . p+ -~/·k 

We consider ¥w,the inequality (19.33. Prom (19.3) for I: - 1 

and (20), the ine,hal:ty at k is satisfied if 

I aJr"-,, (I_air), 
'I(k) = p + 1 + a 1- Q ~ 1. 
1 

But this is true beCause f'(k) ~ 0 and therefore 1(1:) ~ Itl) = 1, 
VI: ~ 1: 

The inequalities (19) prove that t· = liID,t_oo tJr exists and t· E 

8(to, (fJ-y)-l/,). 
Lemma 2 now ensures that all :ei: are well-defined, remain in 

Db and converge to a :e* e D l . Moreover, G is continuous at z· so 
that :e*. = G(z*). This implies that F(z*) = O. 

In order to obtain the error estimate, we s~ow first that 

1 1 ." 
1 M ~ -(p+l) . 

- Jr P 
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That result from (20), the boundary of a (from the hypothesis) and 

p p [1- (P/(P~I})"]' 
(p+ 1)"'1' + p+ 1 1- p/(p+ 1) 

~ /(1:) = (P:l)"I' + (p: If-I'[l- (P; 1)1: r ~ I, 

which is true because /,(1:) ~ 0 and /(1:) ~ lilll,t,_oo /(1:) = 
[P/(p+ 1)]1-1' ~ L 

In addition 

( 
p ) IIp 1 [(P+ l)!:a] (p+1)·lr 

4+1- t .,:E;; fh (p+l)J:+l p' ,1:=0.1.. .. 

holds. This is clearly correct for k = 0 and. if it holds for k - 1. the: 
for k 

Now, the error estimate on t/: follows from 

00 

t* - t/: = L)tJ:+i+1 - tJ:+i) 
i=O 

( L)1/1' 1 [(p+ l)pa] (p+l)l,p 

~ fh (P + 1)J:+1 P 

00 1 [(p+l)"a](P+l)'IP 
x t; (P + l)i P . 

Using (p+ l)"a/p :E;; 1, following from a :E;; p/(p+ 1) and (p+ 1)~-1 ~ 1, 
we obtain 

• (p)1/P 1 [(p+l)"a](P+1)·/P 00 1 
t - t", ~ f3-r (p+ l)J:+l p. ~ (p+ l)i' 

The statement (13) follows fr?m Lemma 2. With this Theorem 
2 is proved. 
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