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Abstract. The article is dedicated to Newton's method for solving non-
_ linear equation systems. The Kantorovich convergence theorem assumes that
the derivative of the system function is Lipschitz continuous. Our purpose is to
provide error estimates in the case of a Holder continuous derivative.
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1. Introduction. The problem we discuss is to find solutions
of the systems of equation

F(z) =0, - (1

where F:D C R® j—» Risa given operator. The Newton’s iterates
are :

gz g F(z5)1F(z), k=0,1,..., (2)

where, F’' denotes the G-derivative. The use of the Newton’s it-
eration is considered as a standard numerical solutions. The con-
vergence analysis has a long history. In 1948 Kantorovich gave a
famous convergence theorem. A later proof, is due to Ortega and
Rheinboldt (1970): :

N'ewton-Kajntorovich Theorem. Assume that F: D C R*
- R" is F-differentiable on a convex set Dy C D and that

W) - P < lie =Yl ey € Do 6]
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Suppose that there exists an z°€ Dy -such that ||F'(z°)~Y| { 8 and
a = fyp < 1/2, where s 2 [|[F'2°)~'F°)|. Set

= ()T 1==20), = ) 14 (1 - 20)17),

:and ‘assume that S(z°f*) C -Dy. Then the Newton iteérates are well-
defined, remain in S(z°,{*),'and coniverge toa solition’z* of F(z) = 0
which is unique in S(z%**) n.Dy. Mdtreover, ‘the error estimate

ll=* = =Ml < (Br2*) @)™, #=0,1,... (%)
holds. : | ©

We note that the error estimates (also in later versions) sup-
pose the condition of Lipschitz continuity.

Counter example. For the following system

\/—i+zz—- )

the Lipschitz inequality (3) doesn’t holds for the Euchdea.n norm.
Proof, If z = (4,n"%), y = (4,0), then (3) holds if v 2 3/2n, which

is impossible for all n 2 0.
Note. Instead of (3), we have only a Holder condition:

IF'(z) - Fll € 7lle=9iP, V¥e,y€Do, 0Kp<1  (6)

with p=1/2, v = 3/2.

In the case of only Holder continuous &enVatxve, Newton At
traction theorem (Ortega and Rheinboldt, 1970) states that, if 2*
is a point of attraction of the iteration, then we have superlinear
convergence. :

We did not find something about the error estimate of the
iteration applied to a system like (5). There are several refer-
ences (Anselsone and Moore, 1966; Dennis, 1969; Gragg and Tapia,
1974) about some generalizations of Kantorovich theorem, however,
which assume some conditions for the second derivative.

. The putrpose of this paper is to find formulas of the error esti-
mate for Newton method in the case a Hélder continuous derivative.
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More precisely, we try to generalize the Kantorovich and Mysovskii»
theorems:

‘Newton-Mysovskii Theorem. (Ortega and Rheinboldt, 1970).
Suppose that F:D C R* — R" is F-differentiable on a convex set
Do C D and that for each z € Dy, F'(z) is nonsingular and satisfies
the Lipschitz condition (3) and ||F'(z)~'|| € B, Vz € Do. If 2° € Dy
is such that [|[F'(z°)"'F(z%)|| € p and a = fyu/2 < 1, as well as
5(z° ro) C Dy, where

00
" ro =p§:a’j"1, M
j=0
then the Newton iterates (2) remain in S(z° ;) and converge to a
solution z* of F(z) = 0. Moreover, the following estimate hold

flz* - 2* € ellz® —2* P, k=1,2,... (8)
where

& = EZ (azk)zj—l < a[l‘(l - azh)]-l, E=12,.... (9)
j=0

The results are stated in Theorem 1 and 2. For the case of
Theorem 1 the proof follows the way of the above theorem, but
in the case of Ortéga’é proof for Kantorovich theorem the analogy
methed do not wprk, ' o )
In the case ;; =1 the given formulas provide the classic esti-
mates. :

2. Main results. We propose the following generalization of
the Newten-Mysovskii theorem:

Theorem 1. Suppose that F: D C R* — R" is F-differentiable
on a convex set D, C D and that for each 2 € Dy, F'(z) is non-
singular and satisfies the Hélder condition (6) with p € 1 and
|F'(z)~Y € B, Yz € Dyo. If z° € Dy is such that ||F'(z°)~1F(2°)|| € &
and a = ;}ﬁﬂ'm? < 1, as well as 5(z% ro) C Dy, where

) .
© j=0 ;
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then the Newton iterates (2) remain in S(2° 7o) and converge to a
solution z* of F(z) = 0. Moreover, the following estimate hold

flz* — z¥|| € x|zt - 22~ yP+t, E=1,2,..., (11)
where

a — Y (p+1) -1)/p
= __Z( (p+1)*/, )
wP

j=0
<ap” (1 - a<r+1)"/r) L E=12,.... (12)

For the Kantorovich theorem, we find a partial generalization:

Theorem 2. Assume that F:D C R® — R" is F-differentiable
on a convex set Dy C D and the inequality (6) holds for p < 1
Suppose tbat there exists an z° € Do such that ||F'(z°) =%} < 3 and
a = By < 2, where u > ||F'(z%)"1F(z%)| and 5(=°, (81)-V?) C
Do. Then the Newton iterates (2) are well-defined, remain in
S(z° (B7)~*/?), and converge to a solution z* of F(z) = 0. More-
over, the error estimate

i DPal@t) e
Hz'—z"ll{%(%) ’(p+1)"’[(—‘-’-+7ri‘i] , k=0,1,... (13)

holds.
We apply the last theorem to our counter example.

Example. In the case of system (5), the error estimate is

—a/2\ () 4k
I~ tl< ||F"( Y (3)"
for an z° such that
o o
1P LR < 5

holds.
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3. Proofs. We need the following earlier results of Ortega and
Rheinboldt (1970).

The mean-value theorem for functions with Hdlder
continuous F-derivative. Let F:D C R* — R" be continuously
differentiable on a convex set Dy C D and suppose that, for con-
stants vy 2 0 and p 3 0, F' satisfies (6). Then, for any.z,y€ Dy,

iFy - Fo- F@) -2 < —lv-=P*, (4
Perturbation Lemma. Let A,C € L(R") and assume that A

is invertible, with |JA~Y|| < 8. If|A-C|l < vy and By < 1, then C is
also invertible, and ||C~Y|| < 8/(1 - 7B). '

DEFINITION. Let {z*} be any sequence in R". Then a sequence
{t*} for which

Pt -t S tapr—ta, E=0,1,...

holds is a majorizing sequence for {z*}. ,

Note that any majorizing sequence is necessarily monotonically
increasing. ' -

Majorizing lqwences arise as solutions of certain nonlinear
difference equatiens. The idea is given in the following two lemma..

i
- Lemma 1. For G:D C R" — R, suppose that there exists an
monotone function. ¢: [0, c0) — [0,00) such that on some set Dy C D

e = G € #(lIG(z) — 2)l), V=,G(2) € Do, (15)

assume, further, that for some z° € Dy the iterates z* = Gz, k=
1,2,... remain in Dy and the sequence ;. defined by

tip1 =t + ¢(tb - tb—l): =0, 4 2 HG(ZO) - 30"1 k= 1, 2) aee

converges to t* < co. Then lim z* = z* exists and the estimate
—0q

flz* = *| < t* =, E=0,1,... (16)
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holds. Moreover,‘ ifz* € D and G is continuous at z*, then z* = Gz".
If an inequality of the form
IG*(z) — (=)l < ¢(lIG(z) - 2)|I, lIG(2) - =°|l, li= - =°l}), an
Vz, G(z) € Dy

holds, Lemma 1 extends to a more general setting:

Lemma 2. Let G:DC R* — R® and ¢:J, x J, x J5 C R® —
[0,00), where each J; is an interval of the form [0,q], [0,a), or [0,00)
and ¢ is monotone in each variable. Suppese that there is a set
Do C D and an z° € Dy such that (17) hclds whenever z,G(z) € Dy,
and that with to = 0, ; > ||z~ G(z°)]|| the solution of the difference
equation

tegr —te = ¢t — tpmyn te, i), E=1,2,00

exists and converges tot* < co. Finally, assume either that S(z°t*) C
Dy or that S(z°,t*) C Do and t; < t* for all k > 0. Then the iterates
¥ = G(z*), k= 0,1,... are well-defined, lie in 5(z°,t*), converge
to some z* € 5(z°,t*), and satisfy (16).

Proof of Theorem 1. We define Gz = z — F'(z)"'F(z). Then
|G*(2) - G(2)ll € BIIF(G(2)) - F(z) = F(2)(G(z) - 2)|

1 — plptt
<SPG - =P+,

and the associate difference equation is the following:
' . 1 +1
tk+1 -l = ;ﬂ‘)‘(tl: - tE—I)’ ) to "_'.0’ tl =p, k = 1’2)"' .
We show by induction that
trepy —te Spa @D -DIP L bz (18)

holds. For k = 0 that is correct because ¢, — to = p < 4. If it holds
for k= j -1, then ’

1 -1 _1y/p) 1 a1 =1
tiy1—-t; < ;—;—iﬁ'r(#d((’“)f 1)’") =pa .
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Inequality (18) provides
k-1 o0 .
t =kx-longotk=klixgoz:(t‘i+l-tj)<”za ? = rg.
. j=0 j=0
Now the convergence statement follows from Lemma 1.

In order to obtain an etror estimate, we define oo = §7/(p+ 1)
and from

”zb-ﬂ - zk" < aol’lﬁk - zb-lnp-{-l
< aolts = teo1 P! € agp®H oG -+ 1)p

results
- k4+m-1 m : .
B g P Z I+t ~ 2F)f € Zag(nl)’-l)lruzk -t +Y
=k =1
o0 s .
glizt ~ At Za(()(pﬁ)’—l)/p(tk — gy Y = (PH1))7
j=21
Since

o0 . . ,
TPV DI, gy )G4Y G40

=1

. o
o0 Lol a1y /py (1Y =4+ 1)
= (G -DIp [

< Lafrt P ()

J=1

oo ’ -1
= ag E,-_,(1?«0-1)'((ﬂ-i»l)"-1)/.1’a =ex < ap~? [1 - a(yH)"lrl ,
j=0 )
the proposed inequality holds.
Proof of Theorem 2. Set Dy = S(z° (87)~Y/?) N Dy. Then for
z € Dy we have
1 ¢ WOV 0 i 1
llF'(Z)— Fi(z )ﬁ €llz-2 PP < B < "'F"t(zO)—lu'

Thus, the perturbation lemma shows that F'(z) is nonsingular for

all z € Dy, and that ’
-1 B
17 @) < T=hllz =+ ¥z € Dy,
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so that G(z) = z — F'(2)~1F(x) is well defined on D;.
If z,G(z) € D, it follows from the mean-value theorem that

G (z) - G()] = | F(G(2)) ' F(G2))
= |F(G(z))"'[F(G(=)) - F(z) - F'(z)(G(z) - =)
1 IG(z) — =[P+
S s 1P BicE) -

= ¢ (IIG(2) - zll, IG(=) - =°I}),

where

. 1 Jeas]
é(s,t) = mﬂ71—67tP'

We now apply Lemma 2 to the difference equatior.

trgr — e =t —lay,tp), to=0, t=pu k=1,2....

We now show that {¢;} is an increasing and bounded sequence.
in fact that

1 .
ti-’-l < F’;’ (19.1;
tipr >ty (19.2)
t§+1 O‘tg { pa' (193)

holds for £ = 0,1,.... We use the induction method. The inequali-
ties clearly hold k = 0. We assume they hold for £ ~ 1.

First we consider the inequality (19.1). It follows from (19.3)
for i = 0(1)k — 1 that

. 1
ti<pu+...+patt=y (20)

l-—a’

From the recurrence relation for ¢34, we obtain the following equiv-
alent form for (19.1):

- |
1~ sy < (-1 - (1) P70).
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It is possible to consider the following more restricted inequality, if
we consider the definition of a, (20), the condition that p < 1, and
(19.3) for k—1: ,

ok~ 1P+l ak=141/p ¢ [1 - a( 11’_'_‘::)’] [1 —all? 11:";}.

This follows from

o < (2 )’sl

’ k i/p
areiot e 12 ¢ [ty o ()] ¢,

l—-uw

p+1 2’
_k v
olE-Uptl 4 o (11 _(: )' Safa®-YP 414 4otV
' 1 1
€§(1+...+F)=1.

With this (19.1) is proved. ‘
From (19.1) for k and (19.2) for £ — 1 we notice that

By (e —tey )P+

t -~ tp = .
k41— Lk p+1 I-prt >0

We consider now the inequality (19.3). From (19.3) for k-1
and (20), the ineqlimr;ty at k is satisfied if

4
¥

Wi d 1-aky?

;ﬂk) =P+1 +e(T5) <1
But this is true because f'(k) < 0 and therefore f(k) € f{1) = 1,
Vi 21,

The inequalities (19) prove that ¢* = lims_.o #; exists and t* €
S(to, (B)~1/7).

Lemma 2 now ensures that all z* are well-defined, remain in
Dy, and converge to a z* € D,. Moreover, G is continuous at z* so
that z* = G(z*). This implies that F(z*) = 0.

In order to obtain the error estimate, we show first that

1

1
— < S(p+1)P.
l—ﬂ'rt’.’,‘{p(”') -
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That result from (20), the boundary of a (from the hypothesis) and
P, P [l—(p/(x’+1))"]'
(p+ 1)  p+1{ 1-p/(p+1)
__ P p_\'-P 17
< f(k) = (p+ 1) +(p+1) _ [1-( +1)*] <t
which is true beca.use f’(k) >0 and f(k) < hm;,_.m f(k) =

[p/(p+ DI? <
In addmon

1/p p 1P+ /p
t*+1—tk<(—p—) = i[(p“)'“] . k=0.1....
By (p+ 1) P

holds. This is clearly correct for k£ = ¢ and. 1f it holds for k£ — 3. thex
for k

By (e —ten M (ot D

By(te — tgq )P

t"'*l_tk:p-i-i iy r
. (p+1)* =1)/» {p+1Yrn
=(p+ 1)(»+1)‘-(k+1)(ﬁ ’/ N
P \57/
Now, the error estimate on t; follows from
o
-ty = Z(tk+i+1 = th4i)
=0
(—2-) 1/p 1 [(p+ l)pa](}‘-H)*/P
Br/ (+1)+! P
1 [(p+ 1)Pa](f+‘)'/’
3t .
i=0 (p+ 1). p

Using (p+1)Pa/p < 1, following from o < p/(p+1) and (p+1)P~! < 1,
we obtain

‘ » 1/p (p+1)Pa (p+1)*/p 1
c-u<(f) (p+1>~+*[ I Lo

. The statement (13) follows from Lemma 2. With this Theorem
2 is proved.



198 On the Kantorovich hypothesis

Acknowledgement. The author is greatful to Dr. Georg
Bader from University of Heidelberg for a number of suggestions
that helped to improve this paper.

REFERENCES

Auselsone, P., and R.Moore (1966). An extension of the mention Kontorovick
method for solving nonlinear equations with an applications to elastiaty. J.
Math. Anal. Appl., 18, 476-501.

Denis, J.E. (1969). On the Kantorovich hypothesis for Menton’s method. SIAM
J. Numer. Anal., 6(3), 493-507.

Gragg, W.B., and R.A. Tapica (1974). Optimal error bounds for the Newton-

" Kantorovich theorem. SIAM J. Numer. Anal., 11, 10-13. ‘

Ortega, J.M., and C.W. Rheinboldt (1970). Jterative solution of Nonlinear Equa-

tions in Several Variables. Academic Press, New York.

Received December 1992

D. Petcu is an assistant to the Departement of Informatics
at the Mathematics Faculty of Timisoara University, Romania. At
present, she is engaged in research on the doctoral thesis — about
the numerical solutions for stiff differential equation systems.



