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Abstract. This paper is devoted to the investigation of the optimality
of difference schemes. Some general methods are proposed to accelerate the
computations.
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Introduction. A new method of theoretical study-compu-
tational experiment — is more and more often applied in various
fields of nature sciences. Its realization leads to a situation, where
we must solve r > 1 similar equations and r can be very large.
Therefore the minimization of computational costs of proposed al-
gorithms is very important problem. In some cases the minimiza-
tion of CPU - tirﬁe is investigated instead of compufationa.l costs. -
We note there that the solution of this new problem depends not
only on proposed :algorithms, but also on the technical parameters
of computers used to execute the numerical simulation. In this pa-
per we will consider some general methods proposed to accelerate
the computations. Our aim is to state appropriate optimization
problems and to investigate numerical algoritms for their solving.
Note that the position of grid points, the number of iterations, or
the data storage schemes can be used as free parameters for solving
optimization problem. Some closely related questions are investi-
gated by Bajarinas and Ciegis (1991).

1. Optimality of iterative methods. We begin our analy-
sis with the following example. Iterative methods are implemented
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for solving many nonlinear problems. Let assume that we approxi-
mated some nonlinear nonstationary dlfferentml problem by a dif-
ference scheme »

.

(L)

Suppose for simplicity that for the nonlmea.r functxon f(y) the fol- '
lowing estlmates kold

) = SO € Cillu=oll,  lIflle < Co. (1.2)
An lteratxve method is used for solvmg( (1 1)

e

= (‘). : (13)

ﬂI

Let z= §— y be the error function. Subtracting (1.3) from (1.1) a.nd
takmg (1.2) into account we obtain the relation

-1
Nzi<dl’z" ll, g¢=rC

Now we discuss the stopping criterion for the iterative method (1.3).
The process is continued until the iteration error is sufficiently small
Il 2|] € e17. We have from (1.2) that |y € Co, therefore, if we take
¥ =y, then || Z || € Cor. This leads to the stopping criterion

zli€elizl€ ¢’ Cor < ear
and we have that the number of iterations can be estimated as
s3> so=Ine/Ing, £ =£&/Co.

In order to solve (1.1) for to € ¢ € to + 1 we have to perform
1/7 steps and the total amount of iterations is equal to Q(r) =
In¢/(rlng). The optimal value of the parameter 7 is found from the
minimization problem

minQ(r) = Q(r"). (4
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Usmg a necessary condmon Q'(r) = 0 for r to be a local minimizer
we get the optlma.l value of the parameter °C; = 1/e = 0.36.

CoroLLARY 1.1. A pratical value of this result is that in the

case of slow convergence of (1.3) (0.5 < ¢ < 1) we must reduce the
parameter r instead of trying to achieve the stopping criterion with
the given value of . The convergence of (1.3) is optimal if after each
three iterations the error reduces by a factor €= 0.05.
, ~ Using this methodology we can take into account various de-
tails about the algorithm. For example, if Runge s method is used
to estimate the accuracy of the time mtegratlon, then after simple
calculatxons we get

- minQa(r) = Qr(r),  'Qa(r) = (m(lzé,) ln(g-glrec'l))

.Now the optimal value of the parameter 7 is equal to *C; = exp(4)
where A satisfies the cubic equation

343+ (3 41n2)A2+(ln22 2ln2)A+ln2 0.

Next we consider a typical situation when the choice of r is re-
”"stncted by the’ canvergence analysis but not by the accuracy de-
“inands. Then the stopping’ criterion || Z || < €172 depends on ,

defined acborchng to the accuracy analysis and the computations

are 1mplemented'w1th the parameter 7 = pr,p < 1. The optimal’
value of r is founfl from the minimization problem

minQi(r) = Qi(n),  Qu(r)= Fﬁ <

Using a necessary condition Qi(r) = 0 we get the equation
- (lne- D)A - (D+ng(D+1)) =0,

where we noted A =lnp), D = In(rC;). A simple a.nalysxs shows
that nC, < 7*Cy = 1/e, therefore the statement of Corollary 1.1
becomes even stronger in this case. In practice we can use an itera-
tive process of predictor-corrector type as an approximate solution
of the minimization problems stated above.
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2. Optimality of the data storage sche’me;‘In this section
we consider one interesting example, which is connected with the
optimality of numerical methods. The method of a computational
experiment was used by Ciegis and Dement’ev (1992) for the the-
oretical investigation of backward transient stimulated scattering
(SBS).The dimensionless equations for the mathematical descrip-
tion of SBS, considering diffractive broadening of beams, waves and
material instationarities, self-focussing nonlinearity, are given as

Oer , Ber arZg
ot + == 3z l[.lA_LCL + 2 er
= ~Tpoes +ing (lecl’ + 2les|)ez, (2.1a)
de 9 Z
—ati ans - —ipAjes + 2520,
= Tsoter +ins(Qlesl +leses,  (218)
Ty 8¢ 180 oo 1w} —w?)
(a2+ ) 2&*( )
=Tgeres + X K " {2.1¢)

where ep s , ¢ are complex amplitudes of laser, Stokes and hy-
personic waves, respectively. In the case of cylindrically symmetric
beams

1
Aiu= ?E?'ar

The appropriate initial and' boundary condxtlons are glven at the
boundary of the region Qr -

u, OSrgR,OngL

‘er(0,m,8) = eb(r,t), es(L,rt) = eh(n), C(214d)
er.s(Z, R,t) =0, aqﬂZOQ 0, (2.1e)
er,s(2,r0) = eoL(Z, ), a(Z r,0) = a°(Z r), 0i(Z,r0)=0(Z,r)
Tt is%rell known that the conservation of some energy quanti-
“ties of e 5(Z,r,t) is a very important feature of nonlinear (linear)

optics problems. Simulating of the main qualitative features of
the soluticn is a desirable attribute of difference schemes (see, e.g.
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Clegls (1990)). We use a splitting method to construct the basic
dlﬁ’erence scheme (Ciegis, 1989)

- u(-—-;) @+ u(~1) + arZo ©+ u(;l)

, —imA—— > 5 =0, (2.2q)
of - [ 2 o? +0 - ‘o oON
T te—p— = I‘,uf: +70 : (2.2b)
o —u | v —v ‘
= P57V, -—— =-Tso7%, : (2.20)
T T
1 ~ 1., 1,
= 5(0’ +0), ©= —(u +u), T= E(v +v),
’—’4—6"; =L + &, (2.2d)
= exp (inc (Jul’ + 207)7)u, (2.2¢)
= exp (in, (1217 + 2ful*)7)9, (2.2f)
v(—lr)—v _iﬂ‘Av(-—l)+v+asZo =1 +8 -0 (220)

2 2 2

The implementation of this scheme is noniterative and only the
Aridiagonal systems of equations are required to be solved at each
time step. It is easy to prove that the difference scheme (2.2)
preserves the cons@rvatxon of discrete energy

1k 4 lo(=1* = lu(=1II + livll*. (2.3)

In practice t!ie <dimension of the difference system N x M (N
and M are the numbers of points of w,,w;,, respectively) is too large
for saving all information in the fast memory of the computer due to
the limited amount of this memory. Therefore the implementation
of the algorithm involves swapping and this operation takes a bigger
part of all computational time. Suppose that the processor time,
needed for the realization of (2.2) per time step is t;, and the data
exchange time is {3 () << i3). Then the following modification is
proposed. Each partial problem of the dimension Nx My, M; < M is
solved for the time interval ¢; € ¢ € ¢;4p before the next exchange of
data with exterior memory (p 3 2). The recalculation is performed
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in some overlapping boundary domains, but the share of this extra
work is not big. The total realization time can be estimated as

T(p) = C(‘l + % + o 1)(‘1 + tz))

where N x M, is the dimension of data, that can be stored in the
_fast memory of the computer. The optimal value of p is obtained
from the minimization problem

minT(p) = T(6").

3
This modification proved to be very éfﬁcient for solving applied
equations (see Fig. 1).
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Fig. 1. The classical region of computation and the domain of real-
ization of the propesed algorithm.

3. Adaptable grids and the optimality of difference
schemes. The method of grid adaptation is usually used for solv-
ing problems with fastly varying solutions. In the case of nenlin-
ear optics problems we deal with the specific situation of focussed
beams. An adaptable modification of (2.2} is proposed by Ciegis
(1990), Ciegis and Dement’ev (1992) to convey the rapld oscilations
of the solution accurateix . N 4

Methods of variatienal calculus enable us to mvestxgate the
optimality of numerical algonthms by stating a general variational
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problem. It is very important that the classification of varicus
modifications of the basic algorithm can be based on this varia-
tional model. In this section we investigate the main steps of such
a methodology. The class of problems considered by us has the
reaction-diffusion form

fu % :
—a-t— = 5;5 -+ f(z,t,u), (310)
u(z,0) = ue(z), Lu=0, i=12 - (3.1h)

Let w,,w, be a family of time and spatial grids. They are assumed
to be nonuniform

w,::{tj: tjztj-l"}'fj, j:o’l,...’K, thT}’
wh={2i: 2i=Tie1+hi, i=01,---,N, zy=1}.

The position of #;,7; can be used as free parameters for solving
the optimization problem. But first we define a difference scheme.
Aditional requirements, such as the conservativity of the difference
scheme, the order of the approximation accuracy or the possibility
of economical realization, are usually considered for solving this
problem. We nate that some of these properties can be included
into the variational model and 2 selection of the best difference
‘'scheme then depen'ds on the obtained solution . We restrict there to
the implicit differ¢nce scheme, which is extensively used for solving

problems of reaction-diffusion type: ‘

’ ytfi.gfé + f(zi, 4541, 9), ) (3.20)
y(z:,0) = up(z:), l;-'y =0, j=1,2 (3.28)

Let z = u—y be the error function. It satisfies the following equation
21 =ii‘i+.f(zl'!ﬁ)—f(zi)g)+'/)) (33)

where ¥; is the truncation error, which can be represented as
. ) hivs — R
\&2"'1 =U.5T,‘+1ﬁ’+l + ———————'+13 > flsn,

Ri +h} 1y 2, 38
= O ). (3.4)
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We note that the second order accuracy is still obtained for the
solution of (3.2), if we use the negative norm to estimate ¢

-1

N-1 0.5
[l = ( Yoh(d M'ﬁt)z) < C(r+h?).

i=1 k=i
Now the definition of the optimization problem depends on our
specific goals. Assume that the number of grid w, points is fixed
to N and our aim is to achieve the highest possible accuracy of
the difference scheme solution . Then we have the minimization
problem

w”‘:rhlzg’mn;g!cllﬂl1 = li*h. (3.5)

The problem of determining the optimal time grid w, is much sim-
pler then the one connected with the space grid ws. We can replace
it by the following optimization problem, which is very usefull in
computational experiment

IIZ*Ig%j+1) T T (3.6)

C Z(t4) = {2 1)l € el (401}

where z = 2* + 2 and z* represents a time-dependent part of the
error. Numerical methods for solving (3.6) are investigated in many
papers (see Lauson et al, 1991). The global problem (3.5) is very
complex for solving. Therefore we define the optimal grid wp(tj41)
from the local error per time step

. i+1 — . ;
o (D T = 12" 1l @.7)
The exact value of #*! can be find only for model problems. In
practice we determine it approximately by solving (3.3). The trun-
cation error is estimated from (A*y — Aj), where A*§ is a second
finite-difference operator of high order accuracy . Expression (3.4)
can be also used for this purpose. Note that we tacitly assame
that substitution of the numerical solution into the theoretical er-
ror expressions is allowed in the sence that the numerical estimate
is also asyniptotically correct (see Babuska and Yu (1986), Adjerid
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and Flaherty (1988)). Thus we must solve an additional boundary
value problem to compute the global error £*!. In order to avoid
this extra work we can use the estimate, which follows from the
stability of the difference scheme

12 1 < Cli¥lla € Cull'llz + Call¥® L2
We now define the approximate minimization problem

D (19l = 119 (38)

The problem (3.8) is still a difficult mathematical problem.

REMARK 3.1. A more simple is the adaptive local grid refine-
ment algorithm, for which the number of grid points N is not fixed
and the local fine grids are introduced in regions where the error
indicator exceeds a prescribed tolerance (see Moore and Flaherty
{1990), Verwer et al. (1992)).

Next we shortly consider numerical methods for solving (3.8).
In order to illustrate our analysis we examine the truncation error
{3.4). Assume that the grid satisfies the condition h;y; —h; = O(h?).
This further iuiﬁlijzs that (3.8) can be approximated as

HE

i N '
H
rin S AT o vl B4V 12 = et 2
Zjn, i;w ! = Inin, ‘_§=£h‘h. i 12 = liv*|l

In general we obtain the minimization problem -

¥

N :
min 3 hidiu, By = [l9*13,  di(u, h) = A gi(u), (3.9)
wa(N) =1

where the selection of d;(u, &) depends on the difference scheme, the
norm, for which the stability inequality is proved, and on the other
additional information. Since we don’t know the exact solution
u(z,t) the difference scheme solution § is used to define d;(j,h).
“The constrained minimization problem (3.9) is nonlinear due to the
dependence of § on the unknow sclution vector h = (hy, hy, - -, hx).
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Equation (3.9) must be solved by some iterative method. As one
of such an iterative method we can use the inverse interpolation
procedure of de Boor (Sanz-Serna and Christie, 1986). The other
simple iterative method is defined by

wr(N) &=

N
min 3~ A2 1g2Cy") = [19*113 (3.10)
i=1 ’

The solution of (3.10) is well-known, it is based on equidistributing
a local truncation error indicator
$ s—~1 “1
(hi)"9i(Cy )=¢, c¢=const.
This solution can be obtained from the boundary-value problem
~ (V) ) =0, m=0, znv=1, (8.11a)
PY) = (@), o = 2 — 2 = higs

Equation (3.11a) can be replaced with a more general iterative
method

] s~1
-z

= (('y") 2r),- ‘ (3.11b)

Though there is no theoretical convergence results, iterative met-
hod (3.11) is investigated numerically (see Daripa (1991) and the
references therein). For some test problems these authors encoun-
tered convergence problems, therefore developing better methods
for solving (3.9) is still a challenging task.
Now we cite some typical forms of the adaptive (or monitor)
functions g(y).
~ AF1. Geometrical adaptation (see Sanz-Serna and Christie
(1986), Dew (1992)). '

L]

n=1, g=(a+5B)"% a2l

where a is the regularization parameter, This adaptive function
9(y) leads to equidistribution of arclength. We note that such a
selection of g(y) is not based on any truncation error estimate.
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AF2. Minimization of finite-element truncation error (see

Sanz-Serna et al.,1988).
n=2  gly)=a+ly:l, a>0.
AF3. High order truncation error (Degteriév et al., 1987).
n=4,  g(y)=oa+lyszel, a>0.

Assume that z = z(a) € C[0,1] and z; = z(a:), a; = th,. Then it
follows from (3.4) that we can write the truncation error y* as

1
¥ = K5 et + Ts2ul) + O(RY)

= S () z0)a + O(h).

The truncation error ¢* is of order O(h%) if z(e) satisfies the bound-
ary value problem

—((u"2,)e =0, z(0)=0, 2z(1)=1.
AF4. Minimization of the difference scheme trucalion error.

n=2 g(y) =o+|yezzzl, >0
This monitor function follows from (3.4).

4. Adaptabfe grids for time-dependent PDE. We can -
include into our ‘analysisi various other modificaticnis of the ba-
sic algorithm. For time-dependent PDE one may distinquish two
main categorics of adaptive-grid methods, viz. dynamic and static
ones. While dynamic methods adapt the grid in a continuous man-
ner, like classical Lagrangian methods (Miller and Miller (1981),
Mazhukin and Takoyeva (1990)), static methods adapt the grid
only at discrete times (Verwer and Trompert (1992), Moore and
Flaherty (1990)). Some methods may be called intermediate be-
tween these two groups (Verwer et al., 1988). In all cases we obtain
additional terms of the truncation error, which. arise after the dis-
cretization step. As an example we consider the following well-know
static regridding method (see Bajariinas and Ciegis, 1991).
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S1. The grid prediction stage. Firsi we solve (3.2) on a fixed
spatial grid. The obtained solution y* then acts as input for a
reqridding algorithm (e.g. (3.9)) which generates ws(t;41, N) at the
advanced time-level by equidistributing a chosen monitor function.

S2. The interpolation stage.

¥ =Py = Pa(ty, N),wnltjs1, N),¥), (41a)
where ¥ is obtained by interpolating 3 and some interpolation
formula is used for this porpose.
S3. The integration stage.

i+1 ; .

P ppt s £, (4.18)

|

Assume that the difference scheme (3.2) is stable and the interpo-
lation error can be bounded by |jy||s € Ch*.

Theorem 4.1. A solution of the adaptive method (4.1} con-
verges to the solution of (3.1) and we have the asymptotic error
estimate .

I¥ ~ u(t)lh < 5(CIW I +ConliFll), 527 (42

The proof of this theorem is only technical and is given by
Bajariinas and Ciegis (1991). Only conditional convergence for
T > Ch*~! follows from (4.2). Since (4.2) is only upper bound of
the error to show that this result is sharp we will consider the model
problem

du % ‘
Eza—;-}-f(t,t) 0<ze<l,

where f(z,t), u(z,0) and the Dirichlet boundary conditions are cho-
sen so that the exact solution is u(z,t) = tsinxz. Assume that the
regridding step S1 generates consecutivly the grids

w;,(tgk)={z:,~: z; = ih, i=0,1,:--,N, Nh:l},
w;,(tgk.(.;):{z.-: z; =(i—05)h, i=12,---,N,

Zo = 0, IN41 = 1}
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Table 4.1. Errors of a compui:ationa.l experiment

r 0.1 0.05 0.025 0.0125
h=0.100 | 3.21E-3 | 143E2 | 3.57E-2 | 146E-1
h=0.050 | 7.27E-4 | 353E3 | 9.09E3 | 4.11E2
h=0.025 | 1.71E4 | 8.75E-4 | 2.27E3 | 1.05E-2

Piecewise linear interpolation of the solution ¢ is used in 52, there-
fore we have the interpolation error estimate ||¢)||s < Ch2. Errors
{lzllc at t = 1 as a function of parameters r and h are shown in
Table 4.1. ‘

As it follows from the numerical results only conditional con-
vergence is obtained in this case (see (4.2)). We can estimate the
interpolation error ¥ more accurately

1, ~ -~ ~ . _— ,
Sl < 191, 1 1= 22 mconin b1 B

Balancing space discretization and interpolatjon error is obtainec

if we solve the mi'x{imization problem
v e

i f e o
| H 1 F = .
P min 19511z + 19l = {i¥ll

Now the difference scheme solution converges unconditionally. The
same method can be used for other adaptive procedures, too.

&
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