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Abstract. This paper is devoted· to the investigation of the optimality 
of difference schemes. Some general methods are proposed to accelerate the 
computations. 
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lntrod uction. A new method of theoretical study-compu
tational experiment - is more and more often applied in various 
fields of nature sciences. Its realization leads to a situation, where 
we must solve r > 1 similar equations and r can be very large. 
Therefore the minimization of computational costs of proposed al
gorithms is very dnportant problem. In some cases the minimiza
tion of CPU - tirlte is investigated instead of computational costs .. 
We note there that the solution of this new problem depends not 
only' on proposed ialgorithms, but also on the technical parameters 
of computers used t~ execute the numerical simulation. In "this pa
per we will consider some general methods proposed. to accelerate 
the computations. Our aim is to state appropriate optimization 
prob!ems and to investigate numerical algoritms for their solving. 
Note that the position of grid points, the number of iterations, or 
the data storage schemes can be used as free parameters for solving 
optimization problem. Some closely related questions are investi
gated by Bajarunas and Ciegis (1991). 

1. Optimality of iterative methods. We begin our analy
sis with the following example. Iterative methods are implemented 



R. Ciegi" R. S1:irmantcu 149 

for solving many nonlinear problems. Let assume that we approxi
mated some nonlinear nonstationary differential problem by a dif
ference scheme 

y -11 = ICy). 
T 

(1.1) 

Suppose for simplicity that for the non linear function I(y) the fol-
lowing estimates hold . 

II/(u) -/(v)1I ~Clllu -vII, 1I/.!lc ~ Co· (1.2) 

An iterative method is used for solvin~ (1.1) 
,. ) 

(1.3) 

Let ~= fI- 11 be the error function. Subtracting (1.3) from (1.1) and 
taking (1.2) into account we obtain the relation 

Now we discuss the stopping criterion for the iterative method (1.3). 
The process is continued until the iteration error is sufficiently small 
11 ~ 11 ~ £1'1'· We have from (1.2) that bltl~ Co, therefore, if we take 
Y = 11, then 11; II~ COT. This leads to the stopping criterion 

11 ! 11 ~ q'lI ; 11 ~ q'Co'1' ~ £1'1' 

and we have that the number of iter~tions can be estimated as 

• > BO = lnt/lnll, 

In order to solve (1.1) for to < t < to + 1 we have t~ perform 
1/'1' steps a.nd the total a.mount of itera.tions is equal to Q('1') = 
Ine/('i"lnq). The optimal value orthe para.meter ris found from the 
minimiza.tionproblem 

, (1.4) 
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Using a necess~y:,conditio~ Q'(r) = 0 for l' to be a, lo~minimizer 
wegei the optimal value of the parameter r*Cl == l/e~ 0.36 ... 

COROLLARY 1.1. A pratical value of this result is' tha.t in t'he 
case of slow convergence of (1.3) (0.5 < q < 1) we must reduce th,e 
paramet'er l' histead o/trying toachi~ve the stopping criterion with 
the give~va.lue of r.Theconvergence of (1.3) is optimal if after each 
three iterations the prror reduces by afactor e~ 0.05. 
:. Using this methodology we can take into account various de
tails about the ~koHthm~' For example, if Runge's method is used 
to estimate the acc~~y ~f the tirpe integration, ~hena.fter simple 
~alculations we get'" , .' , " . 

. 1 ( In, 2ln') 
.. ~nQ8(r~ = 08(1'*),' :08(") =;: In{rC1) + In(O.5rCd . 

. ,Nmv theoptlmal valu~oU~ pa.rame~err is equal to r·Cl = exp(A) 
. where A sati$iies t~e c:;ub~c equation 

3A3 + (3 -,4~2)A2 + (ln22 - 2ln2)A +ln22 = O. 

Next we :coilsider a typical situation when the choice of l' is re
'stricted"~Y. the·~n'vergencea.nalysis but not by the accuracy de
··ina.nd~.'Th~tqi stopping' criterion 11 Z 11 ~ '11'2 depends on 1'2. 

"definedaetOtdinit() the. aCcuracy analysis a.nd the cOmputations 
are implemented' with the parameter r = pr2,P Et 1. The optimal' 

I , . 

value of r is found from the miniiniza.tion problem I . 
. ,. lot -Inp 

01(1') = pr2 1n<P1'2Ct ), ,< p. 

Using a necessary condition OHr) ='0 we get the equation 

A2 - {lne- D)A - (D + Ine(D+ 1» = 0, 

where ·we,no~ed.A =:: Inp1, D:;: In(r,Cl). A simple analy,sisshows 
that TtCl <r·Cl =1/e, th~refore the statement of Corollary 1.1 
becomeS even stronger in this case. In practice We can use an itera
tive process of predictor~correctortype as an approximate solution 
of the minimization problems stated above ... 
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2.0ptimality of the data storage scheme~ In this section 
we consider one interesting example, which is connected 'with the 
optimality of numerical methods. The method of a computational 
experiment was used by Ciegis ami Dement'ev (1992) for the the
oretical investigation of backward transient stimul,ated scattering 
(SBS).The dimensionless equations for the mathematical descrip
tion of SB5, considering diffractive broadening of beams, waves and 
material instationarities, self-focussing nonlinearity, are given as 

oeL oeL . . CXLZO 
at +oZ - IJl~J.eL + -2-eL 

= -rLtres + i7}L(leLI2 + 2IesI2)eL. (2.1a) 

oes oes .asZo 
at - oZ :-'fJ~les + -2-es 

= -fsl1"eL + i'1s(2IeL/2 + lesI2)es, (2.1b) 

iTo (0211 1 0(1) 2011 (1 i(w1- w2») 
. 2; {}t2 + r" at + ot + r" 2'lr 11 

f " I1N = (J"eLes + -;;-. . (2.1c) 

where eL,S,' 11 are complex amplitudes of laser, Stokes and hy
personic waves, respectively. In the case of cylindrically symmetric 
beams 

1 0 0 
~J.tI=--r-u, O(r'R.,O,Z'L. ror or 

The appropriate initia.l and, boundary conditions are given at the 
boundary of the regiori QT 

• eL(O,r,t) = ei(r,t), es(L,r,t) = e1(r,t), ' (2.1d) 
o . 

et,s(Z, R, t) = 0. or eL,s(Z, 0, t) = 0, . . (2.1e) 

eL,s(Z, r,O) == e1(Z, r), tr(Z, r,O) ::: qO(Z, r), ".;(Z, r,O) = tr~(Z, r). 
, ,.I ~ , , 

It iiviell known that the conservation of some energy quanti
. ties of eL,s(Z, r,t) is a very important feature of nonlinear (linear) 
optics problems. Simulating of the main qualitative features of 
the solutic n is a desira.ble attribute of difference schemes (see, e.g. 
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Oiegis (1990». We use a splitting method to construct the basic 
difference scheme (Ciegis, 1989) 

ij-:-u(-l} _. Aii+u(-l) ~£Zo. i+u(-l)_O 
,r' ap1 ' 2 + 2' 2 -, 

", - " ", +". tTN -+0-2 =r,Utl. +-;-. .,.. .,. 
• •• u -u· V-tI - = -rLiJPi', - = -rsi1*Jlii, .,. r 

1 1 . 1 
iJf' = 2('" + d), . U = 2(~ + u),ii = 2(: + tI), 
6-" 8'+d - . "N -:;- + 0-r- =, r 6"iiii'" + -;:;-, 

u = exp (i'1LO:'12 + 21;F')"')~, 
v= exp (ifJ.O;f' + 21~f')"');t . 
v(-l)-i . AV(-l)+v asZo v(-:-l)+v 0 

r - '1'. 2 + T' . 2 =. 

. (2.20) 

(2.26) 

(2.2c) 

(2.2d) 

'. (2.2e) 

(2.2/) 

(2.29) 

The implementation of this scheme is noniterative and only the 
jridiagonal systel1ts of equations are required to be solved at each 
time step. It is easy to prove that the ,di1f~rence'8Cheme (2.2) 
preserves the eonsJrvation of discrete energy . '. 

I 
1I~1I2 + 11&(_1)112 = lIu(-1)1I2 + IIvll'l. (2.3) 

, 
In practice tlie ~imension of the dift"erence system N le M (N 

and M are the numbers of points of w,.,w., respectively) is. too large 
for saVing all inform~tion in the rastmemory oUbe computer due to 
the limited a.mount of this memory. Therere)!'e the implementation 
of tbe algorithm involves swapPilll andthi. operation' takes a. bigget' 
part of. all eomputatiQna.i time. Suppose tha.t. the processor time, 
needed for the rea.liza.tion of (2.2) per time step is t17 a.nd the da.ta. 
exchange time it " (tl « t.). 'Then the following modification is 
Pl'Oposed~ Eac:;h partia.iproblem olthe dimension NxMl,Ml < M ill 
solved for tbe time interval 'I , f .. 'I., Wen the next exchange of 
dlrta with exterior me~ory (p ;. 2).Tbe reCa.l~1.11a.ticm is performed 



R. Ciegi6, R. Skirmanta, 153 

in some overlapping boundary domains, but the share of this extra 
work is not big. The total realization time can be estimated as 

T(P) = C(t1 + ; + (p ~ll) (tl + t 2»), 
where N x M t is the dimension of data, that can be stored in the 

' . .fast memory of the computE'f. The optimal value of p is obtained 
from the minimization problem 

minT(p) :: T(p·). 
p 

(J 

This modification proved to be very efficient for solving applied 
equations (see Fig. 1). 

... t 

I .t 

/ '" J,1 I , i : 
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I I ! 

: I / / 
V i i 

:::k' .:': I i 

// Z I I I 

,>;: ;'~,,~ .. i 
',.} . 

L i I V o l 

Fig. 1. The classical region of computation and the dOi'n-al1X at real~ 
nation of the pio~d algorithm . 

. 
3. Adaptable-grids and the 'optimality 01 diff'erefiee 

schemes. The method of grid adaptation is usually used f-ot solv
ing problems with fastiy varying solutions. In the cas~ o-f Mnlin .. 
ear optics problems we deal with the specific situation of f~ussed 
beams. An adaptable modification of (2.2} is proposed by Ciegis 
(1990), Ciegis and Dement'ev (1992) to convey the rapitioscilatio-n:s 
of the solution accurately,~ \~ " \'. \." 

Methods of variati-onAI calc,:!his enable U'S to in~estigate the 
optima.lity of numerical algorithms by stating It general '1"ria.tional 
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problem. It is very important that the classification of various 
modifications of the basic algorithm can be based on this varia
tional model. In this section we investigate the main steps of such 
a methodology. The class of problems considered by us has the 
reaction-diffusion form 

8u 82u 
at = 8z2 + fez, t, u), 

u(z,O)~fJo(z), 'iU=O, ;=1,2. 

(3.1a) 

(3.16) 

Let w,.,w" be a fa.mily of time and spatial grids. They are assumed 
to be non uniform 

w~={t;: tj=tj_l+rj, i=O,l, .. ·,K, tK=T}, 

W,,={Zi: Zi=:ei_l+~' i=O,l,···,N, zN=l}. 

The position of Xi, rj can be. used as free parameters for solving 
the optimization problem. But first we define a difference scheme. 
Aditional requirements, such as the conservativity of the difference 
scheme, the order of the approximation accuracy or the possibility 
of economical realization, are usually considered for solving this 
problem. We note that some of these properties can be included 
into the variational model and a selection of the best difference 
scheme then depeIf:is on the obtained solution: We restrict there to 
the implicit differ1nce scheme, which is extensively used for solving 
problems of reaction-diffusion type: . 

Ut :: Yu + f( Zi, tHt. y), 
Y(Zi,O)=UO(za}, 1111=0, i=I,2. 

(3.2a) 

(3.20) 

Let z = u- 11 be the error function. It satisfies the following equation 

%t = Zu + f(z;, ti) - f(zi, Y) +.p, 

where .pi is the truncatiot:l error, which can be represented as 

.d+l -05' :-j+l + hi+! - hi .~II 
'IIi -. r,+1 u- 3 u. 

+ hf+1 + hf ulV + 0(r2 + h3). 
24~ .. 

(3.3) 

(3.4) 
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We note that the second order accuracy is still obtained for the 
solution of (3.2), if we use the negative norm to estimate 1/J , 

(N-l N-1 )05 
111/J1I-1= ~hi(ttAk!f>k)2 ~C(T+h2). 

Now the definition of the optimization problem depends on our 
specific goals. Assume that the number of grid Wh points is fixed 
to N and our aim is to achieve the highest possible accuracy of 
th'e difference scheme solution. Then we have the minimizati.on 
problem 

min max IIzlh ::: Ilz*lh-
w .. ,w,,(tj,N) f; 

(3.5) 

The problem of determining the optimal time grid w,. is much sim
pler then the one connected with the space grid Who We can replace 
it by the following optimization problem, which is very usefull in 
computational experiment 

max T = Tj+l. 
ilztlleZ(tj+l) , (3.6) 

Z(tj+l) = {zt : IIzf(ti+1)1I ~ tllr(tHl)11}, 

where z = zt + z~ and zt represents a time-dependent part of the 
error. Numerical methods for solving (3.6) are investigated in many 
pa.pers (see Lauson et al., 1991). The global problem (3.5) is very 
complex for solving. Therefore we define the optimal grid Wh(tj+t) 
from the local error per time step 

(3.7) 

The exact value of zf+l can, be find only for model problems. In 
practice we determine it approximately by solving (3.3). The ttun~ 
cation error is estimated from (A*y - Ay), where A*y is a ~cond 
finite-difference operator of high order accuracy. Expression (3.4) 
can l?:e also used for this purpose. Note that we tacitly assume 
that substitution of the numerical solution into the theoretical et
ror expressions is allowed in the sence that the numerical estimate 
is also asymptotically correct (see Babuska. and Yu (1986), Adjerid 
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and Flaherty (1988». Thus we must solve an additional boundary 
value problem to compute the global error z{+1. In order to avoid 
this extra work we can use the estimate, which follows from the 
stability of the difference scheme 

We now define the approximate minimization problem 

(3.8) 

The problem (3.8) is still a difficult mathematical problem. 

REMAR~ 3.1. A more simple is the adaptive local grid refine
ment algorithm, for which the number of grid points N is not fixed 
and the local fine grids are introduced in regions where the error 
indicator exceeds a prescribed tolerance (see Moore and Flaherty 
(1990), Verwer et al •. (1992». 

Next we shortly consider numerical methods for solving (3.8). 
In order to illustrate our analysis we examine the truncation error 
(3.4). Assume tha.t t.he grid satisfies the condition hi+l -hi = O(h1). 
This further implir tpat (3.8) can be approximated as 

J i N 

min Eh(lw~t2 = min }:hihtlufVl' = IItP-II2• 
kll>(N) i:::1 1.tI.{N) i=1 

J 

In genera.l we o,bt.aiit the minimization problem 

where the selection of d.{u,k); depends on the difference schemer the 
norm, for which the stability inetrwality is proved, and OD: the other 
additional information. Since we don't know the exact S<illl1tion 
u(z,t) the difference scheme solution y is used to define dt(u,h).. 
,The constrained minimization problem (3.9) is nonli:near due to the 
dependence of y on the un know solution vectilr h. = (h1' h2' "', hN). 
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.Equation (3.9) must be solved by some iterative method. As one 
of such an iterative method we can use the inverse interpolation 
procedure of de Boor (Sanz-Serna. and Christie, 1986). The other 
simple iterative method is defined by 

(3.10) 

The solution ·of (3.10) is well-known, it is based on equidistributing 
a local truncation error indicator 

• n .-1 (h.) 9i( Y ) = c, c;; const. 

This solution can be obtained from the boundary-value problem 

( (,-1, •. 0 
- P Y) %F)r = , %0 = 0, %N = 1, (3.11ai 

Ply) = (gly»l/r., 

Equation (3.1180) can be replaced with a more general iterative 
method 

, .-1 
% - % .-1 • -- = (p( y ) %,.)r' r. 

(3.llb) 

Though there is no theoretical convergence results, iterative met
hod (3.11) is investigated numerically (see Daripa (1991) and the 
references therein). For some test problems these authors encoun
tered convergence problems, therefore developing better methods 
for solving (3.9) is still a challenging task. 

Now we cite some typical forms pf the adaptive (or monitor) 
functions g(y). 

AFt. Geometrical adaptation (see Sanz-Serna and Christie 
(1986), Dew (1992». 

n= 1, g(y) = (a + y~)0.5, a ~ 1, 

where a is the regularization parameter. This adaptive function 
g(y) leads to equidistribution of arclength. We note that such a 
selection of g(y) is not based on any truncation error estimate. 
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AF2, Minimization of finite-element truncation error (see 
Sanz-Serna et al.,1988). 

n = 2, g(y) = er + IY.til, er> O. 

AF3. High order truncation error (Degteriov et al., 1987). 

n = 4, g(y) = a + IY.u~i, a > 0. 

Assume that x = x(o') E e[O,l} and Zi = z(O'.),O'i = iho. Then it 
follows from (3.4) that we can writ~ the truncation error t/J. as 

./,- h2(1 1/1 1 2 IN) O(h4) 
'1'; = 0 iZOOUj + 12xou; + 0 

. ' = i(ulII}3/4«ui")1/4Zo}o + O(h!} . 

The truncation error tj,z is of order O(h!) if x(er) satisfies the bound
ary value problem 

-«(U:")1/4XO )o = 0, z(O) = 0, x(l) = 1. 

AF 4. Minimization of the difference scheme trucation error. 

·n = 2, 
J 

g( y) = er + IY.ti.ti I, 
This monitor fun<;tioD follows from (3.4). , 

I 

f) > O. 

4. Adaptable grids for time-dependent PDE. We can 
include into our analysis various other modifications of the ba
sic algorithm. For ~ime,.dependent PDE one may distinquish two 
main categories of adaptive-grid methods, viz. dynamic and static 
ones. While dynamic methods adapt the grid in a continuous man
ner, like classical Lagrangian methods (Miller and Miller (1981), 
Mazhukin and Takoyeva (1990)), static methods adapt the grid 
only at discrete times (Verwer and Trompert (1992), Moore and 
Flaherty (1990». Some methods may be called intermediate be
tween these two groups (Verwer et al., 1988). In all cases we obtain 
additional terms of the truncation error, which,arise after the dis
cretization step. As an example we consider the following well-know 
static regridding method (see Bajarunas and.Ciegis, 1991). 
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SI. The grid prediction stage. Firsi; we solve (3.2) on a fixed 
spatial grid. The obtained solution 'If then acts as input for a 
reqridding algorithm (e.g. (3.9» which generates w,,(fj+1. N) at the 
advanced time-level by equidistributing a chosen monitor function. 

S2. The interpolation stage. 

(4.1a) 

where yi is obtained by interpolating yi and some interpolation 
formula is used for this porpose. 

S3. The integration stage. 
'+1 . 

11 - V = A7/+l + 1(7/+1). (4.1b) 
'T'j 

Assume that the difference, scheme (3.2) is stable and the interpo
lation error can be bounded by 11~113 , Ch'. 

Theorem 4.1. A solution of the adaptive method (4.1) con
verges to the solution of (3.1) and we have the asymptotic error 
estimate 

Hr! - u(tj)lh ~ tj(C11lv?1I2 + C2.!.1I~1I3)' 'T'j ~ 'T'. (4.2) 'T' 
The proof of this theorem is only technical and is given by 

Bajarunas and Ciegis (1991). Only conditional convergence for 
r ~ ChP- 1 follows from (4.2). Since (4.2) is only upper bound of 
the error to show that this result is sharp we will consider the model 
problem 

Ov. 02u 
(}t = ox2 + I(x,t) 0 < Z < 1, 

where I(z, t), u(z, 0) and the Dirichlet boundary conditions are cho
sen so that the exact solution is u(x,t) = tsinn. Assume that the 
regridding step SI generates consecutivly the grids 

W,,(t2J:) = {Zi: zi=ih, i=O,l,···,N, Nh=!}, 

w,,(t2J:+d= {Xi: zi=(i-O.S)h, j=l,2, .. ·,N, 

Zo = 0, XN+1 = I}. 
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Table 4.1. Errors of a computational experiment 

r ,0.1 0.05 0.025 I 0.0125 

h=O.100 3.21E-3 1.43E-2 3.57E-2 I 1.46E-l 1 

h=0.050 7.27E-4 3.53E-3 9.09E-3 4.11E-2 

h=O.025 1.71E-4 8.75E-4 2.27E-3 1.05E-2 

Piece wise linear interpolation of the solution 11 is used in 82, there
fore we ha.ve the interpolation error estimate 1I~1I3 E;; Ch2 • Errore 
IIzllc at t = 1 as a function of parameters rand h are shown in 
Table 4.1. 

As it follows from the numerical results only conditional con
vergence is obtained in this case (see (4.2)). We can estimate tht 
interpola.tion error ;p more accurately 

1,7.1_ 0.5 . hilhi - 1 hill 11, 
'I' - -;:-mFIDfD I ; - I !l'l_ 

Balancing space discretization and interpolatjon error is obtainec 
if we solve the mihimization problem , 

i ' 
j r min 1Itf;t:lb + I~I = II~II. 

w.(N) 

Now the differenCe ~cheme solution converges unconditiona;lly. The 
same method can be used for other adaptive procedures, too. 
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