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Abstract. A stochastic discrete neuronetwork is defined. In the invesiiga-
tion of discrete neuronetworks probability methods are applied — a weak conver-
gence of probability measures. Limit theorems (the strong law of large number
and normal law) are proved for the stream of signals, going out of neurons.
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1. Introduction. A stochastic discrete neuronetwork is ae-
ined in this paper, and limit theorems, characterizing the size of
signals going out of neurons, are proved. The model of a discrete
aeuron is used defined in the review [1]. In the investigation of dis-
crete neuronetworks probability methods are applied, in the cou-
crete, a weak coﬁvergence of probability measures. The case is
considered, whenfstreams of signals comprising the identically dis-
tributed random variables. The strong law of large numbers and
normal law are proved for the stream of signals going out of neu-
rons. All the random variables considered in this paper are defined
in one basic probability space (Q, 8, P). Now we present some def-
initions of the weak convergence of measures theory (Billingsley,
1977). Let S be a metric space. We consider probability measures
defined in the class of Borel sets in space S. If probability measures
P, and P satisfy the relation [; fdP, — [ f dP for each really de-
fined continuous function f in space S, then we consider P, to be
weakly convergent to P, and we write Pn = P. Let X map the
srobability space (, 3, P) into the matrix space S. If X is measur-
able (in the sense X~'® C ), then we call X as a random element.
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The distribution of the random element X is a probability measure
P = PX~1in pair (S, %) P(A) = P(w; X(w) € A). We suppose, that a
sequence of random elements {X,} weakly converges in distribution
to the random element X and we write that X, = X, if distribu-
tions P, of the elements X, weakly converge to the distribution P
of the element X. At first we consider a simple case, when we have
two neurons with two signals going into the each neurons and one
signal going out of the neurons.

2. A mathematical model of the discrete neurons. So
we have two discrete neurons and relations between them (Vedenov,
1990). This model is presented in F ig.("l.
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Fig. 1. The model of two discrete neurons.

The neurons play an identical ordinary function ~ they sum up
the weight sizes of signals arriving at the neuron. The size of the
signal going out of the neuron is determined by the calculated sum
and the threshold of a neuron. The size of signals arriving from
outside are independent identically distributed random variables
with the given distribution function. The intervals between signals
are the same. The sizes of signals are filtered by the function
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That is a threshold element of McCalloch W., Pitts W. (Vedenov,
1990). ‘
By pi11, P12, P21, P22 denoted the weights of the signals leading
to neurons 1 and 2 (links between the neurons); by g1, ¢> denote
thresholds in neurons; by P l),z.(.”), 2 denote sizes of signals ar-
riving at neurons 1 and 2 from outside, by Bin,8:n — the sizes of
signals entering neurons 1 and 2; by ujn, uzs — the sizes of signals
going out of nemons 1 and 2, n 2 1.

Note that

Bin = p11- 2810 + pyg- 20V — g,
Pon = pa1- MBin) + P22 13 — gz, n 2 1.

Then ujn, = AMBin) and uz, = A(Bz,). Note that u;, are inde-
pendent identically distributed random variables with the distri-
bution function fi(z), where Fi(z) = P(uy, € 2), 2 € R, n 21
(Billingsley, 1977). Analogously, u,, are also independent identi-
cally distributed random variables with the distribution functior
Fy(z), where Fy(z) = P(uz, €< z),"z € R, n > 1. Determine the sum
of size of the signals going out of neurons 1 and 2 up to order =
Sin = Y po; 41, Sen = T, t21. We prove the theorem, which dealis
with the summaiy/,sizgs of signals S;, and §3,:

Theorem 1. /(Tlfie strong law of large numbers and the normal
law). If Muy; #0 for Muy; # 1, then

’ sup; Sy sup Sy
igign - 1<1
< G: - = Mupy; lgn

= Mug,;

Sin — nMuyy ;
v /Muyy- (1 - Muy,)
- Son - nMugy

\/;' \/M"n' (1 - Muy)

Proof. Note that DSya = 3 i, Duy, DSza = Y 1.y Duy; there-
fore to prove the theorem, it sufficiently to calé¢ulate Muy,, Mus,,
Duyn, Dugs, n > 1 (Shiriaev, 1980). Put &;(z) = P(py-z58Y +
Pz 24D € z), ®35(z) = P22 g z), z€ Rn2'L

= N(0,1);

= N(0,1);
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Note that
Muin = P(Bin 2 0) = 1 - &13(qy). ¢
‘We also obtain that

" Mugn =P(f2n 2 0) = P(Ban 2 0\A(B1a) = 1)- P(A(B1n) = 1)
+ P(8an 2 0\M(B1n) = 0)- P(A(B1n) = 0)
=P(pn1 + paz- 2% ~ g2 2 0)- P(B1n 2 0)
+ P(payz(*® - 2 2 0)-(1 = P(Brp > 0))

(1 a(E222))

+ (1-Q22(£2—2—)):(1—Mum). (2)
We calculate

Duy, = MM (81} — (MA(Bin)’
= MA(Bin) — (MA(B1n))® = Mg — (Musnj®. (3

Analogously we calculate
Dugn = Mug, — (Muz,)?. 4
Eveﬁtually we obtain that

DSin = n- (Muy — (Mun1)?),
DS3n = n- (Mug; — (Mun)?),

Note that Muy, # 0, DS, # 0, DS3, # 0, if Mul,.‘;é 0 or
Muy, # 1. ' ‘
Theorem 1 is proved.

3. A mathematical model of network of discrete neu-
rons. Generalizing the first model we prove Theorem 2. This
model is presented in Fig. 2. Theorem 1 will be a special case of
this theorem. We consider a stochastic discrete neuronetwork. The
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network consists of k neurons connected in chain. Each neuron con-
tains r signals. Neuron 1 includes r signals from outside, neuron
2,...,k includes r signals from outside, neuron 2,...,k includes a
signal from the previous neuron and r -1 signal from outside. Only
one signal goes out of each neuron, and the signal going out of
the kth neuron, falls out of the network. The signals from outside
arrive at discrete time moments and their sizes are independent
identically distributed random variables. The signals in neurons
are processed just like in the previous model.

= i

Fig. 2. The model of network of neurons.

By p1: denote /the,weights of signals { = 1,2,..., r entering neu-
ron i (links betwden the neurons); by 2" denote the size of sig-
nals arriving from outside at neuron i (independent identically dis-
tributed random variables); by B, - sizes of signals entering neuron
i; by u;s — the sizes of signals going out of neuron ; ¢; stand for the
thresholds in neuron i, i = 1,2,...,k, n2 1.

Sin = 3=y i, 1= 1,2,...,k are summary sizes of signals going
out of neurons. We prove a theorem considering these sizes.

Theorem 2. (The strong law of large numbers and the normal
law.) If Muy;, # 0 or Muy; # 1, then

sup Siq
5—2?—.. = Muil;

Sin — n- Muy
VA v/ Mu- (1 = Muy)

= N(0,1), i=1L2,...,k

»
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Proof. The proof of Theorem 2 is a.nalogous to that of Theo-
rem 1.

Note that DS;, = Y 1, Dug, i=1,2,...,k. _

Put &;(z) = P(Z:;;l Pzt < z), z€R, n2l, i=12,...,k

Notice that :

: r
Pin = Zpuz’(‘”) ~q,
i=1

Ban = P11 MB1a) + 3 pu- 2 — g3,

=2

......................................

.
Brn = pr1- MBr-1n) + ZPH-ZS.”) -q, n2zl
=2 ’

Note also that u;, are independent identically distributed ran-
dom variables i = 1,2.... k. n > 1 (see Theorem 1}.
Analogously as in Theorem 1 we prove that

Muin = (1 - 8i(gi — pi))- Muicin + {1 — ®i(q:))- (1 = Muican),
Mug=0; Dujp = Mujn — (Mun)?, i=12,....k,n21l (5

Finally we obtain that DS;, = n. [M Uin — (Mu?,,]. There Mu;,
is determined by a (5) recurrent equation.

Note that My, # 0, DS;y #0, i = 1,2,...,k, if Mu;, #0 or
Muy, #1 (see (5)).

The proof of Theorem 2 is completed.

4. Discussion.

- 4.1. We mark, that if the condmons of Theorem 1 are satisfied,
then the law of double logarithm is true, i.e.

Sl - ﬂMun
hm =1]=
\/Muu (1 et Muu) 2nlninn

and

S —nMuu
hm =1)=1
\/Mun (1-Mﬂn) 2nlnlnn
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It means that with probability 1 S1, does not exceed -
VMuipr (1 = Muyy)-2nlnlon + n- Mu,; and does not exceed
\/Mun- (l -— M‘Un)- 2nlnlnn + Mu21 (Shiriaev, 1980)

4.2. Wegive an example, how it is possible to apply the central
limit theorem in practise, while considering this neuron model. Let
us define the average size S, = Sia 5 > 1 of a signal going out
of the first neuron by the n-th time moment, Let the size of the
signal, entering the first neuron, be random uniformly distributed
in the interval from 70mV to 80mV. Then, almost surely 0.99947
(i-e., in fact with probability 1), 5100 will be no less than 74.9mV
and no more than 75.1mV (Sevastjanov, 1982). One may draw an
analogous conclusion for the signals going out of the second neuron.

4.3. Other, much move subtle practical conclusions are pos-
sible, when applying asymptotical expansions of the central limit
theorem and statistical methods, but that is not the topic of this

paper.

REFERENCES

Billingsley, P. (1977) ! Weak Convergence of Probabshty Measures. Nauka, Mos-
cow, pp. 451 (in/ Russian).

Kruopis, J. (1977). .!Mathematsc Statistics. Mokslas, Vﬂmus, pp. 305 (in.
Lithuanian).

Sevastjanov, B.A. (1982). Probability Theory and Mathematics Statistics. Nauka,
Moscow. pp. 255 (in Russian).

Shiriaev, A. (1980). Probability. Nauka, Moscow, pp. 620 (in Russxan)

Vedenov, A. and others (1990). Architecture Models of Neuron Ensembles. V1-
NITI, Moscow, pp. 382 (in Russian).

’

Received March 1993



About stochastic discreie neuronetworks 147

A. Garliauskas received the Degree of Doctor of Technical
Sciences from the Computer Centre, the Department of the USSR
Academy of Sciences, Novosibirsk, USSR, in 1977. He is a head
of the Department of Neurocinformatics, Instif. Math. and Inform.
His research interest include optimization problems of complex sys-
tems and development of neural netwark software and hardware for
neurocomputer technology.

S. Minkevic¢ius graduated from Department of Mathematics
of Vilnius University at 1984. He is a researchier at the Department -
of Neuro informatics, Instit. Math. and Inform. His research
interest include nets of stochastic neurones.



