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Abstract. A stoc:hastic discrete neuronetwork is defined. In the investiga­
tion of discrete nelUonetworks probability methods are a.pplied - a weak conver­
gence of probability measures. Limit theorems (the strong la.w of large number 
and normal law) are proved for the stream of signals, going out of neurOllB. 
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1. Introd uction. A stochastic discrete neuronetwor.k IS Qf'­

ined in this paper, and limit theorems, characterizing the sIze 0: 
iignais going out of neurons, are proved. The model of a discretE' 
:teuron is used defined in the review [11. In th~ investigation of di.s­
crete neuronetwoJcs probability methods are applied, in the con­
crete, a weak co.,vergence of probability measures. The case j" 

considered, when ~streams of signals comprising the identically &'- . 
tributed random variables. The strong law of large numbers and 
normal law are proved for the stream of signals going out.. of nelJ:­
rons. All the random variables considered in this paper are defined 
in one basic proba.bility space (O,P,P). Now we present some def­
initions of the weak convergence of measures theory (Billingsley, 
1971). Let S be a metric space. We consider probability measures 
defined in the dass of Borel sets in space S. If probability measures 
Pn and P satisfy the rela.tion Is f dPn - Is f dP for each really de­
fined continuous function f in space S, then we consider Pn to be 
weakly convergent to P, and we write Pn :} 'P. Let X map the 
Drobability space (n,p,p) into the matrix space S. If X is measur­
able (in the sense X-l. C P), then we calIX as a. random element. 
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The distribution of the random eleme~t Xis a probability measure 
p = PX-l in pair (S, c) P(A) = P(w; X(w) E A). We suppose, that a 
sequence of random elements {Xn} weakly converges in distribution 
to the random element X and we write that Xn => X, if distribu­
tions Pn of the elements Xn weakly converge to the distribution P 
of the element X. At first we consider a simple case, when we have 
two neurons with two signals going into the each neurons and one 
signal going out of the neurons. 

2. A mathematical model of the dkcrete neurons. So 
we have two discrete neurons and relations between them (Vedenov, 
1990). This model is presented in Fig:'>!. 

P12 P22 
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Z. 
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l"ig. 1. The model of two discrete neurons. 

The neurons play an identical ordinary function - they sum up 
the weight sizes of signals arriving at the neuron. The size of the 
signal going out of the neuron is determined by the calculated sum 
and the threshold of a neuron. The size of signals arriving from 
outside are independent identically distributed random variables 
with the given distribution function. The intervals between signals 
are the same. The siz~ of signals are fi1tfr~d by the function 

.\(z) ={ 1, z ~ 0 
0, z< O. 
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That is a threshold element of McCalloch W., Pitts W. (Vedenov, 
1990). 

By PU,P12,P21,P22 denoted the weights of the signals leading 
to neurons 1 and 2 (links between the neurons); by Ql, q2 denote 
thresholds in neurons; by z~ll), z~12), z~22) denote sizes 'of signals ar­

riving at neurons 1 and 2 from outside, by f31",/J2n - the sizes of 
signals entering neurons 1 and 2; by "'11., "'2n - the sizes of signals 
going out of neutons 1 and 2, n ~ 1. 

Note that 

131n =Pll' z~l1) + P12' z~12) - ql, 

/J2" = 1'21' A(,ih1l ) + 1'22' z~Z2) - Q2, n ~ 1. 

Then U1" = A(f31 .. ) and "'2" = A(.B2,,). Note that UIn are inde­
pendent identically distributed random variables with the distri­
bution function l1(z), where FI(x) = P(fh .. ~ 1:), x E R, n ~ 1 
(Billingsley, 1977). Analogously, "'2 .. are also independent identi­
cally distributed random variables with the distribution function 
F::(z) , where F2(z) = P(U2 .. ~ z),' z E R, n ~ 1. Determine the sum 
of size of the signals going out of neurons 1 and 2 up to order" 
Sin = L::'::1 "'11, S2" = L:~:::l tl21' We prove the theorem, which deals 
with the summary Flizes of signals Sln a.nd S2 .. ~ 

I .t 

Theorem 1./(T~e strong law of large numbers and the normal 
law). If MUll ::f. 0 'or M U11 ::f. 1, then 

I 

sup;' S1I 
U;I ..... 

n 
=> MUll; 

Sift ~ nMull . => N(O, 1); 
y'n.y'Muu,(1- Muu) . 

S2ft - nMu21 => N(O, 1); 
y'n. y'MU21·(1- MU21) 

Proof. Note that DS!n = L:~=1 DuI" DS2" = E:'::l Du21; there­
fore to prove the theorem, it sufficiently to calculate MUln, MU2 .. , 

DUln, DU2", n ~ 1 (Shiria.ev, 1980). Put .u(x) = P(pu' z~ll) + 
P12·z~12) ~ z), .22(Z) = p(~22) ~ z), z E R,n ~'l. 
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Note that 

We also obtain that 

" MU2,. =P(P,,, ~ 0) = p(p,,, ~ O\).(Pl,.) = 1). P(,\(Pl,.) = 1) 
+ P(P2,. ~ 0\,\(P1,,) = 0). P(X(Pl,,) = 0) 

=p(P21 + 1'22' z~22) - 92 ~ 0)· P(p}" ~ 0) 

+ P(P22" zi22) - 92 ~ 0),'(1- P(P1" ) 0» 

=(1- .22(92 ~~1 )).Mu}" 

+ (1- .22(':)) ;(1- MUl,.), 

We calculate 

Analogously we calculate 

Eventually we obtain that 

DSl,. = n· (MUll - (MUll)'). 

DS", = n· (Mu'1 - (Mu,1)'). 

(1) 

(2) 

(3' , I 

(4) 

Note that MU2n #; 0, . DSln #; O. DS,,. #; 0, if MUln. #; 0 or 
MUln 1: 1. 

Theorem 1 is proved. 

3. A mathematical model of network of discrete neu­
rons. Generalizing the first model we .prove Theorem 2. This 
m~del is presented in Fig. 2. Theorem 1 will be a special ease of 
this theorem. We consider a stochastic discrete neuronetwork. The 
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network consists of k neurons connected in chain. Each neuron con­
tains r signals. Neuron 1 includes r signals from outside, neuron 
2, ... ,k includes r signals from outside, neuron 2, ... , k includes a 
signal from the previous neuron a.nd r - 1 signal from outside. Only 
one signal goes out of each neuron, a.nd the signal going out of 
the kth neuron, falls out of the network. The signals from outside 
a.rrive a.t discrete time moments and their sizes are independent 
identically distributed random variables. The signals in neurons 
are processed just like in the previous model. 

Fig. 2. The model of network of neurons. 

By PH denote fhe~weights of signals 1= 1,2, ... ,,, entering neu­
ron i (links betwfn .the neurons); by Ziil) denote the size of sig­
nals arriving frOmi outside at neuron i (independent identically dis- . 
trib1;lted random variables)j by Ptn - sizes of signals entering neuron 
i; by Uin - the sizes 9f signals going out of neuron ij qi stand for the 
thresholds in neuron i, i= 1,2, ... ,k, n ~ 1. -

Sin = E~=l flil> i =: 1,2, ... ,k are summary sizes of signalS' going 
out of neurons. We prove a theorem considering these sizes. 

Theorem 2. (The strong law of large numbers and the normal 
law.) If MUll ::f; 0 or MUll ::f; 1, tben 

sup Si" 
1<I<n M => flil' 

n ' 

..;;; ~in - n·Muil => N{O,1), f= 1,2, ... ,k. 
n· .. MUil' (1 - MUil) 
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Proof. The proof of Theorem. 2 is analogous to tha.t of Theo-
rem 1. 

Note tha.t DS'n = E:':I DUil. i = 1,2, .. . ,k. 
Put~.(z)=p(Er=lPiIZ!:')~z), zeR, n)l, i=I,2, ... ,k. 
Notice that 

r 

Pin = EpllZ~lI) ~ 91, 
1=1 

r 

fJ2n = P21' A(Pln) + LP2/ z~2/) - 92, 
1=2 ............................. /1 ...... . 

r 

Plcn = Plcl' A(.8Ic-l n) + Eplcl' z~l:l) - 91c. n) 1. 

'=2 
Note also that utn are independent identically distributed ran­

dom variables i = 1,2 .... , k, n) 1 (see Theorem 1). 
Analogously as in Theorem 1 we prove that 

MU;n = (1- ~.(qi - Pil))·Mui-1n + (1- ~;(qd)' (1- MUi-ln), 

Muo::O; DUin=Muin-(MUin)2, i=I,2, ... ,1:, n)l. (5) 

Finally we obtain that DS;n = n· [Mu;n - (Mufn]' There MU;n 
is determined by a (5) recurrent equation. 

Note that MU.n ::f:. 0, DS,n ::f:. 0, i = 1,2, ... , k, if MU1n::f:. 0 or 
MUln::f:. 1 (see (5». 

The proof of Theorem 2 is completed. 

4. Discussion. 

4.1. We mark, that ifthe conditions of Theorem 1 are satisfied, 
then the law of double logarithm is true, i.e. 

P(lim Sin - nMull = 1) = 1 
n ...JMuu· (1- MUll)·2nbllnn 

and 
P(-l' 52n - nMull - 1) -1 lm - -. 

n· ...JMU21.(I- MU21).2nlnlnn 
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It means that with probability 1 Sin does not exceed' 
VMUll' (1- MUll)' 2nlnlnn + n·Mull and does not exceed 
VMU21' (1- MU2l)' 2nlnlnn + MU2l (Shiriaev, 1980). 

4.2. We give an example, how it is possible to apply the central 
limit theorem in practise, while considering this neuron model. Let 
us define the aver~ge size S .. ::;:: ~, n ~ 1 of a signal going out 
of the first neuron by the n-th time moment. Let the size of the 
signal, entering the first neuron, be random uniformly distributed 
in the interval from 70mV to 80mV. Then, almost surely 0.99947 
(Le., in fact with probability 1), 5\00 will be no less than 74.9mV 
and no more than 75.1mV (Sevastjanov, 1982). One may draw an 
analogous conclusion for the signals going out of the second neuron . 

.. ~ 4.3. Other, much move subtle practical conclusions are pos­
sible, when applying asymptotical expansions of the central limit 
theorem and statistical methods, but that is not the topic of this 
paper. 
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