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Abstract. The additive regression function is considered in the framework 
of the proportional hazard regression model for event-history da.ta. The model 
is subjected to nonparametric estimation by the local likelihood procedure. Ex
ample illustrates the method, the hypotheses about the model are tested. 
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1. Introd uction. Let us consider a process of ~vents occurring 
in time. The waiting time to the occurrence of a specified event 
is observed and examined. It is modeled as a random variable T, 
with continuous probability distribution function F(t) and intensity 
- or hazard rate h(t) = -dlog(l - F(t»/dt. The model for survival 
data from a. biological research can serve as an example. However, 
the processes of waiting (or of duration) are encountered in many 
other areas, e.g.? in demography, reliability engineering, economic 
a.nd social surveys .. 

The interest of a statistical analyst is often concentrated to the 
estimation of how the distribution of T depends on other me~ured 
covariables. The specification of regression is frequently a part of 
the model for intensity. It means that an intensity function h(t,z) 
is considered for the distribution of random variable T, when the 
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value of covariable equals x. Rather natural idea of separating the 
"baseline" common intensity from the influence of covariates gave 
rise to the proportional hazard model for regression. There, the 
semiparametric Cox's model is the most popular representant. It 
assumes that the intensity has the form h(t, z) = ho(t)· exp(,Bz). 

However, from the moment when the Cox's regression model 
started its successful career in survival analysis (D.R. Cox, 1972), 
there were the attempts to treat the proportional hazard regression 
model more generally. This approach considers the non parametric 
function b(z) for the logarithm of hazard, the model is then given 
by the intensity 

h(t,z) = ho{t). exp(b(x», (1) 

. where z is a value of covariate and t is a time to failure, for instance. 
There have been derived methods and procedures determined 

especially for the models of survival, e.g., the kernel estimation of 
cumulative hazard function H(t,z) = f~ h,s.x)ds for a given x. The 
estimate is simply computed from results lying in a strata (the 
neighbourhood) around x. The results from this strata are consid
ered as a homogeneous sample, they may be weighted by a kernel 
function. In Volf {1990 a) the method has b~n followed by pro
cedures for estimation of component functions in model H(t, z) = 
Ho(t) . B(z), the q'umulative version of (1). McKeague and Utikal 
(1991) have developed a serie of tests for discrimination between' 

I , 

proportional hazard model and other specific forms of intensity 
model. Their tests are based on the results mentioned above, and 
on the concept of doubly cumulative hazard function. It means 
that H(t,z) is secondarily integrated w.r. to z. 

However, the global kernel estimation in moredimensional spa
ce ofcovariates has low effect. Even for K = 3 the realized points 
are rather spa::'3e in RK, great amount of data is needed in order 
to fill it sufficiently. That is why the idea of additive influence 
of covariates is often used. Some procedures specific for survival 
data model with additive logarithm of hazard proportion have been 
developed in Gentleman, Crowley (1991) and Volf (1990 b). We 
shall briefly recall the method. We shall theb devote to the more 
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general concept modeling the event occurrence process by means 
of the counting process. 

A survey of the theory and of statistical techniques for a.nalysis 
of counting processes models is given in Andersen, Borgan (1985). 
Again, the development of a counting process is as a rule described 
by its intensity. In order to estimate it nonparametrically, we shall 
adapt and apply the local likelihood approach (Hastie, Tibshirani, 
1986). Thf!n the possibilities of testing are discussed for the specific 
form of the components of intensity. The method is illustrated by 
an example. 

. ... , 
2 .. Estimation based 011 local likelihood. There exists 

quite a wide spectrum of various regression models. Nevertheless, 
the problems 'with their indentification are very similar. That is 
why there are attempts to deal with regression functions generally 
in order to obtain some general results, which then may be applied 
to specific cases. 

Let the general regression function be some smooth function 
b(x), describing t.he dependence of a response variable Y on a co
variate x. The additive regression model means that for x = 
(Xl •...• XK)T with values from RK the regression function is ex
nressable as 

K 

b(x) = l)i(Xi)' 
i:l 

• 
The component functions bj are now the objects of estimation. The 
local likelihood method (described and modified to the local scoring 
a.lgorithm in Hastie, Tibshi~ani 1986) consists in the following: If 
we wish to estimate the value bk(XI:) at the point XI: = Z, we take 
function bl:O as a constant (bz ) in some chosen neighbourhood 0:. 
around z. Let us suppose that we are able to construct the log
likelihood (in) based on a random sample {Y;, Xi, i = 1, ... , n}. If bz 
is treated as a parameter, we have to solve the equation at.Jab" = 0 
in order to estimate it. 

In the most of common probabilistic models the logarithm of 
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likelihood can be expressed as 

n 

in Li1(}i, b(x,». (2) 
'=1 

It follows that 

It is seen that the local log-likelihood equa.tion can be solved for 
bz provided the estimates of remaining functions bj , j :f:. k, are 
available from previous step of estimation. Thus, the approach 
leads to an iterative algorithm, which starts from some initial guess 
about the functions, say b}O)(xj) ::;; 0 (orfrom b;O)(xj) = ~jXj, where ~ 

. is the maximum likelihood solution for connected linear function). 
As a rule, the equation is solved numerically by means of 

Newton-Raphson procedure, which needs the second derivatives 
of the likelihood. Schematically, the step from 8-th to (s + 1)-th 
iterative estimate can be expressed as 

b('+1) = b(') _ Bin / 82£n (3) 
# Z 8bz db;' 

Hastie and Tibshirani (1986) recommended for their local scoring 
to incporporate a {smoothing directly into every step (3), to smooth 
also the derivati~es of f n . Stone (1986) deals exclusively with the· 
models of the fotm (2), especially with the exponential family of 
dist"ributions. It assumes that ll(y,8) = Yc(8) + d(B), where c, d are 
known functions. Let 8 = 8(x) describe the dependence ory on x. 
Stone shows that under suitable conditions the following holds: 

1. There exists the best additive approximation Ef:1 bj(x;)+bo 
to function 8(x), with respect to the likelihood-based (Kull

.. back-Leibler) distance. 
2. This approximation can be estimated consistently by the 

polynomial splines. 
Generally, the components bi are ambiguous 8;S to a shift. Stone 
considers norming conditions Ebj(Xj) = 0 (i.e. covariates are the 
regarded as the realizations of random variab.les). 
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The local scoring algorithm naturally differs from global so
lution for reparametrized model, suggested by Stone. There is a 
hope that the solution is consistent, too, in the case of exponen
tial family likelihood, although the proof is not given. The fact is 
well known at least for the Gaussian model, where the local like
lihood coincides with the kernel estimation of regression function 
in traditional s~nse. Besides, if the "trivial" spline of order 0 (i.e. 
the histogram) a.pproximation for functions bj (Xj) is considered, its 
global maximum. likelihood equations are very close to the local 
likelihood ones. The difference is caused only by the use of fixed 
windows (in the case of histogram) instead of a moving window in 
the local likelihood approach. The difference vanishes asymptoti
cally. Thus, the conviction about the consistency is well justified 
from this point of view. However, the numerical procedures of so
lution may differ considerably. The standard likelihood estimates 
of parameters are as a rule computed from one multivariate sys
tem of equations, meanwhile the lrical likelihood procedure solves 
recurrentlv a sequence of simple equations for on(> variable.-

3. Proportional hazard regression model. As it was men
tioned in Introduction, the model (1) is a popular (and natural) 
choice for description of influence of a covariate onto the hazard 
rate. Let us consider a frequently encountered design of survival 
data. A random sample {n, ei, Xi, i = 1,. _., n} is observed, where 
21 is observed value of time, x, is a value of covariate and 6. is tht> 
indicator of censoring from the right side. It means that 6, = 1 
~",'hen .T; is a survival time, 6i = 0 if n is less than survival time, 
the i-th observation is censored at the time moment Ti. The infer
ence for the hazard proport~on b(x) is based on logarithm of Cox's 
partiaJ likelihood, namely on 

in = to; log {"n exp !~Xi?). I-(')}' where 
i=l L..j=l exp xJ J I 

Ij(i) = 0 otherwise. 

It is seen that the likelihood is no more of the form (2). There were 
made several attempts to solve nonparametrically the estimation 
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task for this specific model. Let us mention two modifications of one 
method. They are based on the fact that the baseline cumulative 
hazard function Ho{t) = J; ho( s) ds is a part of the likelihood. Both 
procedures use two-step (alternating) iteration. One step computes 
estimate of Ho provided function b has already been estimated. 
This step is common to both procedures, it utilizes a well known 
estimator 

n . n 

Ho(t) = LOj.l[t ~ T;l/Eexp (b(xj»)' li(i). (4) 
i=l j=1 

The second steps differ formally. Gentleman and Crowley 
. (1991) use the full log-likelihood (or this part of log-likelihood which 

is relevant), namely 

n n 

l" = Lodb(xi)+log(ho(T;»} - Lcxp(b(Xi))·Ho(T;). 
i=l 

The authors suggest a local solution b(z) of {)r Jdb(z) = 0, provided 
function Ho has been estimated from the preceding step. 

Volf (1990b) chose slightly different way. He noticed that ran
dom variables U(:Z:)$= In {Ho(T(:z:»} fulfil the linear regression model 

j 

U = -b(z)+e, 

I 

with e distributed according to the standard doubly-exponential 
distribution. It agaj,n opens the way to the nonparametric (kernel
like, i.e. local) estimation of b(z), from censored sample {Vi = 
In(Ho(T;)), Xi, od, i=l, ... ,n. 

When the local maximum likelihood is used (w.r. to doubly
E:xponential distribution), the result of the method is quite identical 
with the result of Gentleman and Crowley. The procedure adapts 
easily to the case of the additive model. 

However, this method is not adapted to the case in which the 
time-dependent covariates are included. The baseline C.B.F. Ho{t) 
is no more a part of likelihood, function b(x) has to be estimated 
from another source. 
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In the sequel, we shall consider a general design, based on the 
model of counting processes, Simultaneously, we enlarge the model 
and we aJlow the time-dependent (random) processes of covariates 
Xi(t), i = l, ... ,n. The counting process N(t) = Nl(f), ... ,Nn (t) is a 
set of right-continuous random step functions on [0,7], with steps 
+1. It is assumed that no two components step simultaneously. In 
this model, the components need not to be i.i.d., the recurrent 
jumps are allowed. Ni(t) simply counts the events of i-th kind or 
or i-th object in the life history. The upper bound T is such that 
Ho(T) < 00 • 

. The model is fully described by thL' (random) hazard rates for 
counting processes Ni(t), namely h;(t) = ho(t)· exp b(Xi(t». li(t), i = 
1, ... ,n, t E [0,7], where li(t) is an indicator of the risk. The in
ference is again based on Cox's partial likelihood. Its logarithm is 
now 

in ::: f JT log n exp (b(X;(t))) dN;(t). 
t;;t () 2:i :1 exp (b(Xj(t»)Ij(t) 

Let us again consider the K -dimensional covariate processes 
Xi(t) = Xli(t), ... , XKi(i) and the additive regression function b(x) = 
L~=l h(xl-). Let us fix the value z in the domain of, say, Zi, and 
handle bit Xl) like a parameter bl(z) in some neighbourhood Or of z. 
Then the deriva.tion of in yields 

{)in ""iT {[ ( J « }) Rt(z,b,t)} ( ) 8bt (z) = L.; 0 1 Xl, t) E o~ - exp bl Z • 8(b,t) dNi t , 
• 

where' Rt(z, b, t) = 2:i=11[Xl;(t) E O,}exp {E!':l bl:(Xl:j(t»·l[k -:F. 

t] }Ij(t) and 8(b, t) = Et:l exp {b(X; (t))}. Ij(t). By solving the equa
tion ol,../8bl (z) = 0, we obtain the following iteration step: 

[

A T () 
6(·+1)( ) - -1 "1 Rt(z,b' ,t) dN,·(t) 
t z. - og L...t S(6<') t) • 

'=10 ' , 

/ t.Jl [Xn(t) E O.J dN;(t)j. 
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There b(') is the estimate of function b (of all its components) ob
tained from previous, s-th step of iteration. It is seen that (at 
least) the values of b~') at each observed Xkj(T;) are needed pro
vided Ij(Tj) == 1. 11 denote now the times of observed counts. The 
first iteration step may start from biO) == ... == b~O) == 0 or from 
another convenient initial guess. 

As the logarithm of partial likelihood does not correspond to 
the form (2), the :onclusions of Stone (1986) does not hold for 
the proportional hazard regression model. The consistency has not 
been proven up to now. Nevertheless, the method has been checked 
by a number of examples, simulated as well as with real data. The 
results are encouraging. Sometimes the approximation of functions 
bl: by the regression splines is preferred (cf. Sleeper, Harrington, 
1990). However, as it was pointed out, both a,pproaches (local 
likelihood as well as the reparametrization by splines) meet with the 
same theoretical problems, although their computation procedures 
may differ one from the other. 

4. Example. Let us now demonstra.te the usefulness of the 
local likelihood method. The example has been wnstructf'd artifi· 
dally, nevertheless it can represent a real situation. 

Let us assum~ that the longtermed survey ha.., been done in 
a company, in order to obtain an information about the dynamics 

I 

of employment, efpecially about the departures of employees. Let· 
us consider the data describing the result of this survey. Their 
structure is 

{T;, C"XH, ... ,X4i, i== L ... ,n}. 

Response variable T covers last 10 years~ it is measured in months 
from 0 to 120. Its value, 21, denotes either the moment of depar
tureJ>f employee (i), or the moment of censoring, but in this case 
mostly T; == 120. lIere i is the number of an employee. The indic(l,tor 
variable C == 1 when the employee was fired, c == 2 when the individ· 
ual left his job voluntarily (retired employees are included in this 
group), c == 0 for remaining or censored employees. The covariables 
have the following meaning: Xli is the age of the individual in years 
at T;, X 2i is the length of previous employment in the company, up 
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to the moment Ti. It is measured in years, too. X3i characterizes 
the category of the job: 1 - researcher, 2 - specialist, 3 - admin
istration, 4 - technical staff, 5 - unqualified assisting employees. 
X4i = 1 for men, = 2 for women. Variable 0 is thus considered as an 
indicator of two competing risks (6 = 1 or 0 := 2), and of censoring 
(6 = 0). Both Xl and X 2 are measured (in years) at the moment of 
an event (or of censoring), both a,re changing during the time. It 
means that for example the value of covariate Xl for i-th person at 
tiine t (months) is Xli(t) = ma.1{{O; Xli -(T; -t)/12} (in years), sim
ilar connection holds for X 2 . Yet the indicator of risk set has to i:>e 
introduced. Let us define Ij(t) = 1 for t E [max{O; T;-12X2i}, T;] -
the period during which the person has been with the staff of the 
company, Ii(t) = 0 otherwise. 

Now, we are interested' in the estimation ofintensities for both 
events (considered separately, or considered together as one event -
leaving the job.) The data are prepared for the analysis of covariate 
effects to the intensities in the framework of the proportional haz
ard regression modeL namely the model allowmg time-dependem 
,ovanates. 

Results. The secondarily smoothed shapes of estimated func
tions bl , b2 , b2. a.re graphically displayed in Figure 1. After every 
step of their iterative estimation, the optimal (least squares) lines 
have been constructed from points {Xl:i,bI:(Xl:i), i:= 1, ... ,n}. The 
c.hanges of the parameters of these lines have served as an indication 
of convergence of our iteration procednre. The procedure started 
from ~I: == 0, k = 1, ... ,4. After the fifth iteration t.he changes of the 
slope parameters were less than 10-3 , we decided to stop the com
putation. The results of fi~al linear approximation are displayed 
in Table 1. The analysis has been performed separately for both 
observed events, i.e. for 6 := 1 and 6 := 2. The table contains also the 
estimates of correla.tion of Xki and bk(Xl:i) and variance of residuas 
of bl:(Zl:i) from the line. The fourth covariable acquired two values 
only, its influence can fully be described by a linear function. 

No norming conditions have been laid on the component func
tions. 
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Table 1. Optimal lines approximating the functions bk • 

component (k) intercept slope correlation variance 
6 = 1: 1 0.3771 0.0137 0.5001 0.0549 

2 -0.1285 0.1218 0.8412 0.0435 
3 -0.5346 0.2004 0.7753 0.0251 
4 -1.0673 0.6258 1.0 0.0 

b= 2: 1 1.6455 -0.0144 -0.3897 0.1129 
2 -0.2972 0.1131 0.8343 0.0396 
3 0.9571 -0.1991 -0.6960 0.0398 
4 0.6551 -0.4'~78 -1.0 0.0 

The estimate of baseline hazard rate ho(t) in Figure 2 completes 
the graphical analysis. The cumulative version has been estimated 
directly from (4), then ho(t) has been obtained by means of the 
kernel smoothing from dHo(t). 

I 
12 

I 
~I __ ~ ______ ~ __________ ~ ________ ~ 0.0 

90 t 1.20 20 ss 

Fig. 2. Estimated baseline hazard rates ho for 6 = 1 arid 6 = 2 
(its scale has bee enlarged 100 times). 

5. Concluding remarks about testing. Local likelihood 
(or local scoring, or moving window) method of estimation is able 
to reveal the shape of the general regression function. Provided the 
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proper model has been chosen. The correctness of the model can 
be tested on several levels. Let us demonstrate it on our example. 

First, the correctness of the proportional hazard assumption 
has to be checked. A number of test procedures have been devel
oped, graphical as well as numerical ones. Mostly they use the fact 
that, under the proportionality of hazards, the logarithms of (cu
mulative) hazard rates are shifted by a constant difference. Namely, 
let us consider two levels Zl, Z2 of a covariate X. Then 

for all t E (0,7], such that Ho(t) > O. Instead of distinct values 
of covariate the stratas around some values may be considered. 

~.Only for the sake of simplicity, let us test the assumption about 
proportional hazard dependence on the fourth covariate, X4 , which 
is only two-valued. The cumulative hazard functions have been 
estimated using the Nelson-Aalen estimator (separately for men 
and for women). The estimator is the special case of (4), when the 
sample is regarded as homogeneous, i.e., b(z) == 0 is inserted into 
(4). Figure 3 shows the results. It is possible to admit that the two 
curves have approximately constant difference. 

-5 
10 50 :30 t 120 

Fig. 8. Comparison of logarithms of cumulative hazard rates 
for men (1) and women (2). 
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Second, the significance of regression can be doubted. The 
hypothesis is tested that some regression functions bt are constant, 
that the dependence of response on corresponding covariates :et is 
negligible. 

In the framework of Cox's model, the estimates of Cox's pa
rameters P are asymptotically normal (cf. Andersen, Gill, 1982). 
That is why we are able to compute the test statistics having ap
proximately Gaussian or chi-squared distribution. Let us again re
turn to the example and assume for a while that the Cox's model is 
the right one for our data. Table 2 displays the partial likelihood
based estimates of parameters th" k = 1, ... ,4, together with the 
values of the test statistics G):. The value of G): should approxi
mately come from the standard normal distribution provided the 
hypothesis Pk = 0 holds. 

Table 2. Estimated Cox's model parameters and values of test 
statistics 

,- ------------------------------------------------~ 

I 
I 

1 
2 
3 
4 

i3k 
0.0075 
0.0712 
0.1124 
0.7474 

8 = 1 
Gk 

0.5726 
1.6528 
0.8628 
2.8004 

8=2 
PI: G" 

-0.0259 . -1.2259 
0.1428 2.0139 

-0.4773 -1.8863 
-0.2057 -0.4932 

~-------------------------------------------------~ 

ill other words, let q(a) be the 1 - a quantile of standard normal 
distribution. When IGI:I > q(a), the hypothesis PI: = 0 is rejected, on 
<cpproximate level 2a. For instance, let us choose the level 2a = 0.1, 
then q(O.05) = 1.645 is used as an approximate bound of critical 
interval. The results from ,Table 2 suggest the following conclu
sions: For the first event (0 = 1), the hypothesis (that the risk does 
not depend significantly on a covariate) is rejected for components 
X2 and X4 • When the risk of the second event (i.e., for" = 2) is 
cOI1Gidered, the hypothesis of negligible dependence is rejected for 
components X2 and Xg • 

With some license, the same conclusion may be acceptable 
even whel the Cox's model is far from reality. However, how the 
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(non)linearity of regression function should be checked? It is the 
third question to be answered by a test. One possibility is sug
gested in Stone (1986). Let us consider a polynomial form of the 
regression function, estimate the parameters - coefficients of the 
polynom. Then let us test the hypothesis that the coefficients of 
order higher than one are zero. 

Another way of testing can be based on the linear approxima.
tion analysis of nonparametrically estimated regression function. 
Table 1 contains the results of such an analysis. However, the re
sults depend strongly on' the "smoothing policy" during the local 
likelihood iterations. 
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