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IN AUTOREGRESSIVE NOISE
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Abstract. In the previous paper (Pupeikis, 1992) the problem of off-line
estimation of dynamic systems parameters in the presence of outliers in obser-
vations have been considered, when the filter generating an additive noise has
a very special form.. The aim of the given paper is the development, in such a
case, of classical generalized least squares method (GLSM) algorithms for off-line
estimation of unknown parameters of dynamic systems. Two approaches using
batch processing of the stored data are worked out.  The first approach, is based
on the application of S-, H-, W- algorithms used for calculation of M-estimates,
and the second one rests on the replacement.of the corresponding values of the
sample covariance and cross-covariance functions. by their robust analogues in
respective matrices of GLSM and on a further application of the least squares
(LS) parameter estimgtion algorithms. The results of numerical simulation by
IBM PC/AT (Table 1) are given.
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outlier, robustness.

1. Statement of the problem. Consider a single input z;
and a single output y; linear discrete-time system described by the
- difference equation

Vi = —01Yk-1— = OnYion + BiZic1 - baZien . (1)
Suppose that y is observed under additive noise §;, i.e.,

.

ur =y +& . (2)

LA

then



Off-line estimation of dynamic systems parameters 95

Up = =G Up-) = = BuUken + b2 + -

+bazi-n +€: + alf;—l + "'+aﬂ£;-n . (3)
or
_  B@™Y) . . |
m s ®

by introducing the backward shift operator z~! defined by lzy =
z3.1, where

G&=(1-71)v+nm ‘ . (5)

is a sequence of independent identically distributed variables with
an ¢ - contaminated distribution of the form

P(&e) = (1-€)N(0,07) +eN(0,03) , )

?(&:) is a probability density distribution of the sequence &; v
is a random variable, taking values 0 or 1 with the probabilities
P(ve =1) =€, p(7e = 1) = 1 —€; ve,m are sequences of independent
Gaussian variables with zero means and variances o}, o3 respec-
tively,

c":(a’,b"), Gr=(01,---;¢n)' br=(blv"':bﬂ) (7)

B(z"Y) = f:b,-z"', Az ) = ‘::a;{"; (8)

i=l i=]

n is the order of difference (;quation (1), respectively;

f; = W(flﬂl)&' » (9)

W(z~1,h) is a noise filter transfer function, A is a vector of param-
eters.

. It is assumed that the roots of A(z~!) are outside the unit circle -
of the z=! plane. The true orders of the polynomials A(z~!), B(z~!)
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are known. The input uignal z; is persistent excitation of an arbi-
trary order according to (Astrém and Eykhoff,1971).

The aim of the given paper is the development of ordinary
GLSM algorithms for the computation of off-line estimates of the
unknown parameters of the dynamic system (1) - (9) in the pres-
ence of outliers in observations.

2. Parameter estimation in the absence of outliers in
observations. Suppose that ¢ = 0 in equation (6). In this case,
as shown in (Astrém and Eykhoff, 1971; Isermann (1981); Young
(1984); Ljung (1987) ) multivariate approaches are worked out to
estimate the vector of unknown parameters. It is known that in

_the case when ‘

W(z"lh) = [1 + A(z"l)]-l (10)

an ordinary classical LS parameter estimation algorithm is used.
On the other hand, it is also known that in a real situation, of
course, relationship (10) is hardly satisfied. Therefore the ordinary
LS used to estimate unknown parameters of a mathematical model
of the dynamic system (1) - (9) is inefficient and that’s why the
estimates of the abpve mentioned parameters will be biased.
Clarke (1967) ;’erfks out the GLSM, which requires that

[ - - 4
W(h) = [146(=Y) ' [1+4(G)] ) (1)
where ! :
) 1+4G(zY) = z'g,-z" (12)
=l

h is a-vector of parameters which correspond to different combina-
tions of a;,...,a, and gy,...,9n,-

This method is more flexible and more useful in practice than
LS. In this case the vector & = (&7,") of the estimates & =
(G1,..-,8n), 8" = (b1,...,bn) of the respective parameters (7) and
the vector § = (gi,...,3s,) of the estimates of the parameters
9" = (91,..-,9n,) ATE calculated using two classical LS of the form
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&) (WD) eIy C3)
§9 =(QrUIQUN'QTWIEY) , (14)

respectively, where _
TO =@OF0) = @, 8, 1) ()
R =(§(,5),...,§S,"')) (16)

are the estimates of parameters ¢ and g, which are calculated at
the j-th iteration using the above mentioned LS algorithms;

) @) ()
Wl = (“’u ¥y ) 17
vy) v/, an
R0 RY() - RO (n-1)
) = R,9)(0) - R..(”(‘n ~2) (8)
g - rO@ I,
r R9(0) R,g;(l) R,g;(n— 1);
! A . R.U:)(O) .
are n X n - symmetric submatrices;
W)= v -
“RO(0)  —RAO(1) e —RaO(n-1)
RO RO R D=2

R G(n—1) -RuO(a=2) -  —Ru0)

are n x n submatrices

¥ W = (- RYY)... - RO(M)RLY(Y)...R D ()  (21)
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is a 2n vector;

ROWO) RO®M) - RD(n,-1)

QTU)QU) _ R,(’)(O) ... R (:)(n’ -2)

R.")(O)

is an n, X n, symmetric matrix;
QI EW = (ROMRD()... R (n,))"
is a n, vector;
j I G 0 i
RO =L - ) - 1) i=Tm
are values of the covariance function of filtered input z},
R,Vi) = ———E(u 0 _ @) (u}Y) - %) i=0,m

are values of the covariance function of filtered output uj,

mﬂ-‘(f) - @) (59 - 7).

k-l

81

R, W) = '(’) -z )(u'(’) @), i=0,m

=1

(22)

(23)

(24)

(25)

(26)

are values of cross-covariance functions which are calculated using

the filtered sequences z;U) and u;") of sample size s;

-1

R = —~ E -é) (e(kj-zi -8 i=0,m,

are values of covariance functions of the residuals ¢;;

e "2"(’) a‘:r‘iu;w, ézs—xz':eg),
N k=1

k=1 k=1

(27)
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u@ = [l + &0)(:°‘)]u9), 79 = [l + @0)(2‘1)] 9, (28)
= 14 A0 - BOE, L 29
1+ E;’U)(z'!) =14 ﬁ”:" +...+ 5(,;’.'):"",

1+ AN Y =141 4 450,

§U)(z'l)=3(lj)z‘l+...+3£{)z'", mz=n-1, m =n, - 1.

The algorithm (13) - {29) of the GLSM is an iterative proce-
dure used for off-line estimation of the above mentioned parame-
ters. Each iteration of the GLSM algorithm consists of six steps.
At the nrst step of the first iteration (j = 1) the sequences :;(j)
and u}U) k = T 5 are obtained using equation (28), where ini-
tial values of the estimates chosen beforehand, are substituted.
At the second step the values of the covariance R,U)(i), R,Y)(i)
and cross-covariance R,,U)(i), R, U)(i) i=0,m functions are cal-
culated using filtered sequences z;Y), u}%) k = 1,5 and formu-
las (24) - (26). At the third step the vector of the estimates
a0 = @,...,89), 70 = BV, . BY’) is obtained using the
ordinary LS of the form (13). At the fourth step the sequence of
the residual eg) is generated using formula (29) and the estimates

aTv) = (3(1".),...,'&?)), ) = (’?’,...,is,”),

which are substituted into the polynomials AW)(z~1) and BU)(z-1).
At the fifth step the values of the covariance function i = 0, m are
calculated using an equation of the form (27) and the sequence
of e(k"' ), generated at the previous step. At the sixth step the vec-
tor 70 = (3,...,5%)) is obtained using the ordinary LS of the
shape (14). Then the iterative stepwise procedure is repeated for
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7 =2,3,... until the respective stopping condition will be satisfied
(Eykhoff, 1974).

3. Two approaches for parameter estimation in the
presence of outliers in observations. In equation (6) it was
assumed that ¢ = 0. Now let us consider the case when this assump-
tion is invalid. It is known (Novovi¢ova, 1987) that both in this case
and for W(z~}; h) of the form (10) M-estimates of unknown param-
eters c” = (aT,b”) of the linear discrete-time dynamical system (1)
- (10) can be calculated using three procedures: the S-algorithm,
the H-algorithm, and the W-algorithm. On the other hand, the pa-
rameter estimation procedure for W(z~1; b} of the shape (11) and

€ # 0isn’t worked out up till now. That’s why in this section we try

to solve this problem using two approaches. By the first approach
the two classical LS of the form (13) and (14) are replaced either
by two S-algorithms

A '(J)Jﬂ,{i#,/ #1367 ”
‘ =1

NG )

t=1-

JE A(J'H) - »(J) + U[Z"’ (E(J)/a)w(l) 1'(:)] -1
. x va(es"’/&)w,‘”, (31)
t=1

_or by.two H-algorithms

X ("”/«) "’?. (32)
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AR ) ,[Zwmwrm]"

=1

x Z¢(e§” 15)u?), (33)
t=1
or by two W -algorithms
i 41 .
E(j’, )_.3(;‘) { ) (J) T(J)]
°
x Z¢(é?’/a)¢$”, (34)
t=1
-1
4:+1)_§m+a[zwo) 070"
° - . .
x Y& /5)ul?, (35)
t=
respectively.
Here
&) = (@, Bh) = @, 8000 B, - BN

are the estimates of parameter polynomials (8) and (12) which are
calculated at the j-th iteration using the above mentioned algo-
rithms; @ is a scale value of the robust estimate; 11)(&? ) /3), ¢(e9 ) /%)
are y-vectors which can be chosen according to Stockinger and Dut-
ter (1987), Novovidova (1991); whereas y(v)/v is non-increasing for
v> 0 and

Lim ¥(v)/v = py < o0;

v (é(" )/5), d)(c(’)/a) are the first order partial derivatives of the
$(e97/5) and ¥(e¥'/5), respectively;
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are the errors of a generalized equation and a filtered genera.hzed
equation at the jth iteration;

(J') =
-(J)

)"G) ,
r(f)
¥

("uc-h ey = Uten Tialy -y Teal

(‘ ut 11 ’“:—u z:—l:""z:-l)
)= (ek-ly---:eb—n,)m)
are the vectors of observations of the output and input, respec-
tively;

g = & /e)/E  for & #0
' A for & =9’

01 = [#( 1)/ gor & 20
‘ J 4 for c(’) =0

The second aﬁprda.ch is based on the robust covariance analy-
sis and ordinary I)S algorithms for parameter estimation (Pupeikis,
1992). In order o increase their efficiency it is necessary to re-
place the respective averaging linear operators in matrices (18),
(20), (22) and vectors (21), (23) by their nonlinear robust ana-
logues according to Pupeikis (1990). For this purpose in each it-
eration j = 1,2,... of parameter estimation the values of the sam-
ple covariance and cross-covariance functions RS’ (0), RS (1), ...,
RO - 1), RP(n), RY(0), RE(1),..., R (n - 1), R¥)(n), are re-
placed in respective matrices by their robust analogues, i.e. ri)(u?),
r(j)(ugu,,_l), ene ,7‘0)(“;“;_“4.1), r(j)(up,uk_,.), rU)(ngk), rU)
(ukzg-.;), oes P (upziongr), PO (wezi-n), ) (uiz}), 9 (uizi_,),

oDy oha)y fOuiag), PD(uiziy), . ¥ (uig ), PO
(u;zz_n),r(j)(ekck), r(j)(ehc;_l),...,r‘j)(c;eg._,,'“) .
Then, in equation (17) )
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"U)(“;";) "(j)_(";":—l) .- "b:)(“;":—u“)
V) = r(uiyg) ... '0)(“;“;-"+2)
11 = .. . ’
Y ) u )
¥ = 9§ =
- (ujer)  —r(spuiL,) . —rD(giui_,,)
"'U)(“;z;-x) "'0)(";1';) "'U)(z:“;-nn)
"r(j)(u;z;—m}-l) —ro)(u;z;-n-b?) Lo -r(j)(u;:;)

and in equation (21)

—r{uju;_,)
) (upu; )
) (z3ui,) J '
P (2595 )
On the other hand, in equation (22) the matrix QTU)QY) will
be of the form

wTDpl) =

r(j)(ekeg) r(j)‘(ckeg_l) e r(fi)(egq_,.,.”)

QT(J)Q(J) - rO)(ctck) :" r(J)(eke‘k_"'+2)

' P (eger) -
and the vector Q70) EU) of the form

rU) (eres—y)
QT EY) = ) (exer-2)

) (ek’ck“')
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In this case various robust estimates of the corresponding co-
variance functions can be used (Gnanadesikan and Kettenring,
1972). ' .

The estimates obtained by the first approach are solutions of
the respective nonlinear equations requiring an inversion of the cor-
responding matrices at each iteration and some initial conditions.
The problem of stopping the calculations of M-estimates will arise
here too. As shown in (Pupeikis, 1992) the second approach is
more helpful and simpler than the first one.

4. Simulation results. As an example we consider the disc-
rete-time object of the form

_ z71 . &
140771 T (14 072-1)(1 - 15271 4 0.7277%)

(36)

ug

or
up — 0.8up_1 — 0.35ug_2 + 0.49u; 3

=2y ~0.82;.2—03b02; 3+ 0492, 4+ & y

where ¢* = (0.7,1) and ¢* = (~1.5,0.7) are real parameters, whose
estimates will be cbtained using formulas (13), (14), whereas ma-
trices (17}, {22} can be rewritten in the forms’

Co 4) ()
igl) = 5[ B (0 —Rgz(O))
vy ‘(—R&’Q(O) R0 /)’
G) )
o) = 5 [ fe (0) RS (1))
Qe™Q s (Rﬁ’)(l) Rﬁ’)(O)

and vectors (21), (23) in the forms
s - [~
Oy =,( o))
()
Nty — . [ RE)
705 =+ (T))
respectively.
Then,
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iy~ = -1 [(RE(0)  RE(0)
((FONO) = (R&J)(o;» Ri”m))’
o)t = -1 { B0)  -RP()
(@0e) " = (-Ri’)(n) R&"(O))
and :
&) _ -1 (-RPORP(1) + RE(ORY)(1)
(bx)‘“‘ (—Ri’)(o)x,&”m+R.&”(0)R93(1)), 37
1\ _ -1 (ROORV(1) - RO RV (2)
(?:)’q’ ( -RID1) + RY(0)RY(2) ) (38)
where

@ = RO(0)RP(0) - R2D(0),
g2 = R2(0) ~ R2U)(1).

In order o calculate the robust estimates of a,, §; and ¢, g2 it
is necessary to write the robust analogues in matrices in (37), (38)

instead of the respective values of covariance and cross-covariance
functions. Then we obtain

PN
o) Q)
-

1) = g;/ ( RO (ugun-a) + 10 (upze) i (z10s-) )(39)
1r —r(’)(ugz;,)r(’)(ugug-;)+r(1)(u§)r(3)(x¢uk_l)

(.?ix) . ('(j)(ei)"fj)(ckfk-x) "',("')(Ckek'.x)"(j)(ekeh-z)) (40)
g2 2r r20) (epery) + r9 (e2)rl) (erer-2) ,

e = ROO) D (u}) - 2D (mezs),
gz, = r20) (cz) - 7"““(‘#‘*-‘)'

As robust analogues of the respective values of covariance and

cross-covariance functions for each iteration j = 1,2,... we choose
here
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. (ﬁb;‘k-—l).%; for odd s
rD(upup_1) = medP (G 8yy) = %[(ﬁ}ﬁg-;)g_l for even s

+(ﬁk ﬁt_l) s"’l

(ﬁ;i;_,)%l for odd s
) (pup-1) = medP (24iy4) = ;[(.;-,a.) §or for even s
Havi),,,]
(6';'),_;_1 for odd s
) (u?) = med¥) (i) = %[(ﬁi)%“‘ for even s
+Hal), .
(&3) e for odd s
ri(e?) = med(&3) = %[(E:)%_‘ for even s
+(#) %H]
o (ﬁbik);_y_ ‘ for odd s
9N upzy) = méd(j’(ﬁkik) = %{({‘kik)%ol for even s
+(iats), “]
. (Ex€r-1) s for odd s
D (eres-) = med¥) (6:8,-) = %[(E*E""l’)g-x for even s

+(Eree-1) ]

(5;5}-3),_? for odd s
rU) (eres.a) = medY) (E48;..5) = %[(Eth-z)g_ll for even s

CT N
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where

i = uj — med(u}),
Ty = 2} — a’)
& = e — med(er),

(u;),%l for odd s
med(u}) = %{(";)g—n for even s
+(ui) 4y,
(eg),_? for odd ¢
med(e;) = %[("‘)g-l ' for even s .
+(c‘)g+1

Realizations of independent Gaussian variables & with zero
mean and unitary dispersion and the sequence of the second order
AR model of the form

Zy =2y 1 ~05z5_9+ &, k=T1,100 (41)

were used as the input sequence z;. A realization of the discrete AR
process was generated as the additive noise according to equation
(11j, where A(z7') = 0.7z7! and G(z™') = =157 +0.77%. £ is a
sequence of independent identically distributed variables of shape
(5) with the s-contaminated distribution (6) and o} = 1, ¢2 = 100.
Ten experiments with different realizations of noise §; were carried
out at the noise level A = ¢Z /o} = 0.1. In each ith experiment the
estimates of parameters a; = 0.7, b =1 and gy = —-1.5, g3 = 0.7 of
equation (36) were obtained using formulas (37) - (40) and s = 100.
In addition, further we replaced the observation us in the following
way

tigo = ugo+ 100 w0} - (42)

and processed it together with other observations in formulas (37)
~ (40). Then we repeated the estimation of the above mentioned
parameters once more.
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Table 1 illustrates the values of by, ;, §; and §» averaged by
10 experiments according to the formula

1< '
&= — LE(,-) (43)
10 i=1
and their confidence intervals
A = ita% ’ (44)

where « is an averaged respective value; &(;) is the estimate of the
respective parameter x obtained after the ith experiment; &, is
the estimate of the variance o,; a = 0.05 is the significance level;
te = 2.26 is the 100(1 — o)% point of Student’s distribution with
v =L ~ 1 degree of freedom; L = 10 is the number of experiments.

In Table 1 the first and second lines correspond to the esti-
mates, obtained by using formulas (37), (38) and the third and
fourth ones - to the estimates, obtained by applying formulas {39),
(40). Besides, the first and third lines correspond to the estimates
obtained in the case of e-contaminated distribution (6) of noise and
the second and fourth ones - to the estimates, obtained by applying
the sequence u; with damaged tiso according to formula {42).

Table 1. Avera'ged estimates by, @y, §1, §2 and their confidence

intervals *
b+ Ay a, + A, @1 A, gt A,
1.054+0.01 0.41 +£0.01 —-2.10 £ 0.02 1.66 +G.02
-3.404£031 ~0.1340.01 0.12+£0.01 0.15£0.01
0.43 % 0.03 0.37+0.06 ~1.54 £ 0.17 1.13+6.36
0.31 £ 0.02 0.49 1 0.06 -1.08+£0.08 0.70 = 0.08

It follows from the simulation results, presented in Table 1,
that in ‘the case of ¢-contaminated distribution (6) the accuracy of
the averaged estimates b;, a; calculated by formula (37 ) is higher
than that of the same estimates obtained by formula (39). The
accuracy of the egtimages fo%the parameters gy, g is higher in the
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opposite case. On the other hand, we have always prefered the
approach, based on the robust parameter estimation using formu-
las (39), (40), when the noise, acting on the output of dynamical
system (1) has a very large outlier (iso is generated by equation

(42)).

5. Conclusions. The results of numerical simulation carried
out by computer, prove the efficiency of the robust approach, based
on a replacement of the corresponding values of sample covariance
and cross-covariance functions by their robust analogues in respec-
tive matrices and on a further application of the two ordinary clas-
sical LS parameter estimation algoritlims. The above mentioned
approach can be used instead of the iterative M-procedures in a
case of very large outliers in autoregressive noise.
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