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Abstract. An algorithm for the sequential analysis of muitivanate data i, 
presented along with some experimental results. The algorithm is based upon 
the sequential noniinear mapplRg of L-dimensional vectors from the L.hiperspace 
into a. lower-dimensional (two-dimensional) vec~ors such that the inner structure 
of distances between the vt"Ctors is preserved. Expressions' for the sequential 
nonlinear mapping are obtained. The sequential nonlinea.r mapping is applied 
to sequential c1usterization of random processes a.nd creation of an essentially 
new method for sequential detection of many abrupt or slow changes in st'veral 
unknown sta.tes of dynamic systems. 

Key worw.: dimensionality reduction, sequential nonlinea.r mapping. le
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Introd uction. The purpose of this paper is to describe the 
sequential nonlinear mapping algorithm which has beE'n found to be 
highly effective in the sequential analysis of multivariate data. Ran
dom processes often have rather a complicated structure. Some
times .nonstationary processes consist of stationary segments with 
typical properties of a certain class. While forming classifiers for 
those processes we need to build clusters and to reject the seg
ments of a random process untypical (or the given class. There
fore, a task turns up to define typical properties of the segments 
by any means and to compare them. It is very convenient to do 
that denoting stationary segments of random processes by some 
mark on the PC screen. Then the marks of the s~me properties of 
segments find thems~lves in a certain place of the screen. and that 
of different properties - in another place. It is achieved using the 
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nonlinea.r ma..pping algorithm in (Sammon, 1969). The stationary 
segments of random processes &re described by a proper mathemat
ical model, and L estimates of the model's parameters make up the 
vectors in the L-hyperspa.ce. These L-dimensionalvectors are nOD
linearly mapped into two-dimensional vectors preserving the inner 
structure of distances among them. However, it can be done only 
after having got the whole .random process. In such a case when 
we are working in a real time and segments of a random process 
are received sequentially, we need to create a sequential nonlinear 
mapping algorithm. 

Another task. While watching the states of dynamic objects or 
technological processes and their changes one has to keep sequential 
observations as well. Objects can change their states abruptly or 
slowly. When the state of an object changes the L parameters 
describing the state change as well. If the object state is described 
by a random process generated by this object, then the state is 
described by the L parameters characterizing the random process. 
Thus, in all cases we can decide about the object state or its abrupt 
or slow change according to the same data or their changes. The 
object can have several unknown states and we need to watch the 
states and detect Jheir changes sequentially and independently of 
the history. It is c;onvenient to watch the object state and changes 
marking it by so~e mark on the PC screen. According. to the mark 

t 

position we can make a decision of the object state and its change 
if the mark position changes. 

For solution of these problems it is necessary to have a" method 
of sequential detection of many cbanges in several unknown prop
erties of ra.ndom processes. There are ma.ny methods of detection 
of c~anges in the properties of random processes in scientific pub
lications (Kligiene a.nd Telksnys, 1984; Basseville and Benveniste, 
1986; Nikiforov, 1983), but there are no methods to &dIve the above 
mentioned problems. 

In this paper a sequential nonlinear mapping is considered. 
The. expressions for sequential non linear mapping of vectors from 
L-hyperspace onto the plane are obtained.. The sequential non-
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linear mapping is applied to sequential c1usterization of random 
processes and creation of an essentially new method for sequential 
detection of many abrupt or slow changes in several unknown states 
of dynamic systems. Examples are given. 

Statement of the problem. Let us have in general a non
stationary random process Zt. However separate segments of the 
process have their own cinstant parameters, i.e., we have a locally
stationary process. The stationary segments may be described by a 
proper mathematical model, e.g., an autoregressive (AR) sequence: 

, 
Zt - rn = - E Clt(Zt_t - rn) + 6v,. 

t=1 

(1) 

where m is the segment average, pis AR order, at(l = 1 •... . p) arc 
AR parameters, 6 is amplification factor of input excitation, v, is 
discrete white noise distributed by N(O. 1). The assumption of sta· 
tionarity involves a condition that all the roots of the characteristic 

. equation are less that 1 in absolute value. The parameters of AR 
are estimated using the Yule- Wa,lker equations (Box and Jenkins, 
1970). Then, we have L = p + 2 parameters: rn, 6, at (l = 1, ... ,p), 
and the L-dimensional vectors represent stationary segments of a 
random process. In (Sammon, 1969) the algorithm of simultaneous 
nonlinear mapping of multidimensional vectors onto the plane is 
presented. Let us denote these vectors by Xi, i = 1, ... , M. The 
L-dimensional vectors Xi are mapped onto the plane into two
dimensional vectors Yi, i = 1, ... , M. The main re'Quirement of map
ping the L-dimensional vectors into two-dimensional vectors is to 
preserve the inner structure of distances between the vectors. This 
is achieved using a nonJinear mapping procedure. 

In our case it is necessary to map the L-dimensional veCtors 
into two-dimensional vectors nonlinearly and sequentially in order 
to process the sequentially received data. 

Solution of the problem. While realizing sequelltial non
linear mapping first of all we have to non linearly map M vectors 
(M ) 2) simultaneously. Afterwards we need to mapsequentially 



and nonlinearly the received parameters vectors and, in such a way, 
to dusteri~ the stationary segments of a random process or to 
watch the present state of a. dynamic object, t.o detect its changes 
~nd deviations from it for a practic.a.lly unlimited time. In order 
to formalize the method we denote by N this practically unlimited 
number of arriving vectors. 

Thus, let us have M + N vectors in the L-hyperspace. We de
note them Xi, i = 1 •...• M; Xi. j = M + 1, ... ,M +N. M vectors are 
al ready simultaneously mapped into two-dimensional vectors Y;. 
i = 1, ... , M. Now we need to sequentially map the L-dimensional 
vectors Xj into two-dimensional vectors }j. j = M + 1 ..... M -+ N. 
Here the nonlinear mapping expressions will change into sequen· 
tial nonlinear mapping expressions respectively. First, before per
forming itera.tions it is expedient to put the two-dimensiona.l vec
tors being mapped in the same .initial conditions, i.e., Y,it = et; 

j = M + 1, ... , M + N; k = 1. 2. Note that in the case of simultaneous 
mapping of the first M vectors, the initial conditions must be cho
sen in a random way (Sammon, 1969). Let the distance between 
the vectors Xi and Xi in the L-hyperspace be defined by df) and on 
the plane - by d'fi respectively. This algorithm uses the Eudidean 
dist""nce measuref because if we have no a priori knowledge con· 
cerning the datai we would have no reason to prefer any metric 
over the Eudide~n metric (Sammon, 1969) . 

. Next, we compute the normalized error of distances E. 

Ej • = (t clij) -I E<c/f; - 4;)2 /dij. 
;=1 i::;1 (2) 

j = M + 1, ... ,M +N. 

For correct mapping we have to change the positions of vectors lj, 
i = M + 1, .. _, M + N, on the plane in such a wa.y that the error E} 
be minimal. 

This is achieved by using the steepest descent procedure. After 
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the r·th iteration the error of distances will be 

(3) 

j=M+I, ... ,M+N. 

here 

<j(r) = (ErJlil _ Yil(r)]') 1/2 

l=1 (4) 

i = 1, . ..• M; j = M + 1 •... ,M + N. 

During the r+ 1 iteration the coordinates of the mapped vectors }j 
will be 

where 

Yjl:(r + 1) = Yjl(r) - F~jl:(r), 

i=M+l, ... ,M+N; k=I,2; 
(5) 

(6) 

F is the coefficient for correction ofthe coordinates~ and it is defined 
empirically to be F = 0.35; 

:, 
BE- M 
~ = H"'(ce .. ~.)-l.D·C (7) 
BJlik f;;: IJ IJ ' 

~2'!1~j = H f:(dfj' cifj)-l{D - C2(dfj)-1[1 + D(dfi)-l]}, (8) 
,11 i:l 

where 

( AI )-1 
H=-2 ?:dii ; 

1=1 

C = '!Iill - JliA;. 

When Ej < t, where t is chosen under concrete conditions, the 
iteration process is over and the result is shQWn on the PC screen. 
In fact it is enough t = 0.01. In order to have equal computing time 
for each mapping we can execute ~nsta.nt number of iterations. In 
practice it is enough I = 30. 
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Sequential eiusterization 'of random processes. The se-
, quentiaJ nonlinear' mapping can be applied to sequential clusteriza

tion of random processes or formation of clusters. A real acoustic 
signal has been received, which was in fact a locally-stationary one, 
and in discrete segments 1024 .ong it was stationary. The signal 
was approximated in the segments by the sixth order AR model. 
For each segment the ARparameters Ill: (1 = 1, ... ,6). the ampli
fication factor of input excitation 0, and segment average m were 
estimated. Then, L = 6 + 2 = 8 - dimensional vectors, representing 
the locally-stationary segments of the acoustic signal, were mapped 
onto the plane. 

20 vectors, as if belonging to two acoustic signal classes. were 
. involved in the experiment, besides, in all cases the first class was 
represented by the vectors numbered from 1 to 10, and the second 
class - from 11 to 20, respectively. Note that the first M vectors, 
mapped simultaneously, are denoted in Fig. 1 and Fig. 2 by mark 
x with the index which means the vector's number. The later 
received vectors, mapped sequentially, are denoted by mark + with 
the respective index. Besides, in all cases there was 30 iterations. 

We present two C8Sel! of mapped vectors, which are taken from 
(Montvilas,1990). fn Fig. 1 the results of mapping of 20 vectors are 
presented, when after simultaneous mapping of M = 19 vectors (10 
from the first clas_' and 9 vectors from the second one) the vector 

I 

number 20, as if received later, was mapped, i.e., N = 1. 

In Fig. 2 the case of ~ sequential clusterisation is presented, 
i.e., after simultaneOus mapping of the minimal amount Ai = 2 of 
initial vectors, belonging to the first class, the remaining N = 18 
vectors (S from the first class and 10 from the second one) were 
mapped sequentially. 

" 

While analyzing Fig~ 1 and Fig. 2 where different cases of non-
linear mapping of the set of the S&JDe vectors are presented, we see, 
that vector number 2, as if belonging to the first class, is distant 
from other vectors of the same claSs, i.e., the -properties of this 
acoustic signal segment are different from the properties typical 
of the first class. Thus, we can reject the vec:tor number 2 while 



I 
~ 

A.M. MOfIloi,.. 

X x,-~ 
~ . ,re., 

XIO~x" X 
oX 5 , 

)en 
JIl. 

XII )(Ut 

+.~" 

------~-----------~.::t 

87 

Fig. 1. The view of the mapped vectors of two classes (1 + 
10,11 + 20), when M = 19, N = 1. 

X1'--------------------------~ 
Fig. 20 The view of the same vectors mapped sequentially, 

when M = 2, N = 18 
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forming the classifier. As it turned out later, the acoustic signal 
segment number 2 was really spoiled by the sensor. 

Sequential detection of many abrupt or slow changes in 
'Ievera! unknown states of dynamic systems. We can a.pply 
the sequential nonlinear mapping in creation of an essentially new 
method for sequential detection of many abrupt or slow changes 
in several unknown properties of random processes, as well as for 
watching the states of dynamic systems or technologica.l processes 
and detecting their variouschange:s. 

Let a. dynamic system (DS) be in any state Si of the set of 
possible states: Si E S. We can watch L pa.rameters at the output 
of OS. Those parameters can be of any physical nature (then we 
must introduce the sca.le coefficient for each parameter). A OS ("-an 
be described by some proper mathematical model, too, e.g., AR 
(1). Then we have L = p + 2 parameters: rn, lI, Gi (k = L ... ,p) a.s 
well, estimated from locally-stationary segments 256 long of the 
observed discrete process. DS states may be unknown. A DS may 
change its states abruptly or slowly. We need to map sequentially 
nonlinearly the L-dimensional vectors, representing the states, into 
two-dimensional vectors in order to reflect the present system state 
by some mark o~ lIhe PC screen and, having in mind the existence 
of particular statek, to identify the current state, a deviation from 
it or a transfer t~ other state when the mark changes its position .. 

We present some simulated experiments. At first we hg,;(;: « 
case when the DS has three states: S = 3. The DS(3) is d~cribed 
by the 3-rd-order AR with the parameters (see Tabie 1). 

Table 1. The AR p~ameters of the states 1 -:- 3 of 08(3) 

STATE ! °1 ! az I G3 I b I 
1 ! 0.30 0.10 0.10 1.0 
2 I 0.10 0.60 0040 1.0 
4 I -0.50 -0.10 0.20 1.0 

We detect the states of 05(3) a.t M + N = 12 time moments. 
First we take such a case when the number of initial simultaneouf' 
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mapping of state vectors is equal to the number of sta.tionary states 
of the OS(3): M = S = 3, and during the time moments M = 1 + 3 
the OS(3) passes through all its possible states S. Then the view 
on the screen is "fixed" from the very beginning because of the 
automatic scale of coordinates. After that we detect the states of 
DS(3) at the time moments N = 4 + 12 s.equentially. According to 
the conditions of the experiment a priori the states of OS(3) are 
known at the time moments (see Table 2). 

Table 2. The states of DS(3) at the time moments 
M + N =·3 + 9 = 12 

MAPPING SIMULTp N (i) SEQUENTIAL (j) 

MARK x' + 
TIME 1 2 3 4 5 6 7 ~ 9 10 11 MOMENT 

STATE 1 2 3 1 3 2 2 1 1 3 3 

12 

2 

In Fig. 3 the 'results of mapping are presented,where at the first 
M = 3 tim.e moments state vectors, mapped simultaneously, are 
denoted by mark x with the index which means the time moment 
number, and the state vectors, mapped sequentiaJly, are denoted 
by mark + with the respective index. 

In Fig. 4 the situation similar to that of Fig. 3 is p~sented, but 
after time moment number 6 the OS(3) changed its state slowly, 
and at time moment number 7 it was between the states number 2. 
and number 1. 

Next, let us take another case. It is taken from ,Montvilas, 
1992). Now the OS has S = 4 stationary states~ The OS(4) is 
described by 3-rd-order AR with the parameters (see Table 3) .. 

In this case the number of initial simultaneously mapped state 
vectors will be M = 2 and not all the possible states of DS( 4) 
..re involved. We detect the states of DS( 4) at the time moments 
M + N = 2 + 14 = 16. According to the experiment conditions. the 
states of DS(4) are known· at the time moments (see Table 4). 
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Fig. I. The view. on the PC screen of the mapped vectors of 
DS(3) sta.tes for the first situation. 
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Fis. 4. The view on the PC s~n· of the mapped vectors of 
DS(3) states for the second situation: 
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Table 3. The AR parameters of the states 1 + 4 of 05(4) 

STATE ClI Cl:r ClS b 
1 0.30 0.10 0.10 1.0 
2 0.20 0.65 0.40 1.0 
3 -0.50 0.30 0.40 1.0 
4 -0.30 -0.10 0.15 1.0 

- Table 4. Tbe states of OS( 4) at the time moments 

M + N =2 + 14 = 16 

~APPING SIMULTAN (i) SEQUENTIAL (j) 

MARK x + 
TIME 

~OMENT 1 2 3 ~ ~ ~ ~ 8 ~ 10 11 12 13 14 15 

STATE 1 2 3 ~ 1 ~ 2 4 1 3 3 2 1 3 4 

The mapping results &re ,presented in Fig. 5. 
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16 

2 

In Fig. 6 the situation similu to that of Fig. 5 is presented. 
The difference is at time moment number 11. where a slow change 
of the state of D5(4) took place, and 05(4) was between the states 
number 3 and number 2. In Fig. 6 tbis situation i. clear. 

Conclusions. The considered sequential nonlinear mapping 
of vectors from the L-hyperspace onto the plane can be applied to 
sequential clusterization of random processes .,ui visual formation 
of clusters rejecting the spoiled elements. ' 

Tbe sequential nonlin~ mapping enabled us to create the 
essentially new method which allows us to sequentially detect many 
abrupt or slow changes in several unknown properties of random 
processes and to watch dynamic system or technological process 
states" their abrupt or slow chaDles on the PC screen in fad with-
out time limitatiol\. ' 

At the very beginning, before sequential nonli~ mapping, it 
suffices to map simultaneously only M = 2 v~. 

• 
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Fig. s. Th~ view on the PC scr~n of the mapped vectors of 
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Fig. 8. 'The viey.r on the. PC screen of the map~d vectors of 
DS( 1> ~a.):es fO~.lthe second situa.tion •. 
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