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Abstract. An algorithm for the sequential analysis of multivariate data is
presented along with some experimental results. The algorithm is based upon
the sequential nonlinear mapping of L-dimensional vectors from the L-hiperspace
into a lower-dimensional {two-dimensional) vectors such that the inner structure
of distances between the vectors is preserved. Expressions for the sequential
nonlinear mapping are obtained. The sequential nonlinear mapping is applied
to sequential clusterization of random processes and creation of an essentially
new method for sequential detection of many abrupt or slow changes in several
nnknowsn states of dynamic systems.
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Introduction. The purpose of this paper is to describe the
sequential nonlinear mapping algorithm which has been found to be
highly effective in the sequential analysis of multivariate data. Ran-
dom processes often have rather a complicated structure. Some-
times.nonstationary processes consist of stationary segments with
typical properties of a certain class. While forming classifiers for
those processes we need to build clusters and to reject the seg-
ments of a random process untypical for the given class. There-
fore, a task turns up to define typical properties of the segments
by any means and to compare them. It is very convenient to do
that denoting stationary segments of random processes by some
mark on the PC screen. Then the marks of the same properties of
segments find themselves in a certain place of the screen and that
of different properties - in another place. It is achieved using the
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nonlinear mapping algorithm in (Sammon, 1969). The stationary
segments of random processes are described by a proper mathemat-
ical model, and L estimates of the model’s parameters make up the
vectors in the L-hyperspace. These L-dimensional vectors are non-
linearly mapped into two-dimensional vectors preserving the inner
structure of distances among them. However, it can be done only
after having got the whole random process. In such a case when
we are working in a real time and segments of a random process
are received sequentially, we need to create a sequential nonlinear
mapping algorithm.

Another task. While watching the states of dynamic objects or
technological processes and their changes one has to keep sequential
observations as well. Objects can change their states abruptly or
slowly. When the state of an object changes the L parameters
describing the state change as well. If the object state is described
by a random process generated by this object, then the state is
described by the L parameters characterizing the random process.
Thus, in all cases we can decide about the object state or its abrupt
or slow change according to the same data or their changes. The
object can have several unknown states and we need to watch the
states and detect their changes sequentially and independently of
the history. It is ¢onvenient to watch the object state and changes
marking it by some mark on the PC screen. According to the mark
position we can make a decision of the object state and its change
if the mark position changes.

For solution of these problems it is necessary to have a method
of sequential detection of many changes in several unknown prop-
erties of random processes. There are many methods of detection
of changes in the properties of random processes in scientific pub-
lications (Kligiené and Telksnys, 1984; Basseville and Benveniste,
1986; Nikiforov, 1983), but there are no methods to solve the above
mentioned problems.

In this paper a sequential nonlinear mapping is considered.

The expressions for sequential nonlinear mapping of vectors from
L-hyperspace onto the plane are obtained. The sequential non-
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linear mapping is applied to sequential clusterization of random
processes and creation of an essentially new method for sequential
detection of many abrupt or slow changes in several unknown states
of dynamic systems. Examples are given.

Statement of the problem. Let us have in general a non-
stationary random process Z,. However separate segments of the
process have their own cinstant parameters, i.e., we have a locally-
stationary process. The stationary segments may be described by a
proper mathematical model, e.g., an autoregressive (AR) sequence:

, ‘
z:—m=—zas(zz-e—m)+bv‘. (1

k=1
where m is the segment average, pis AR drder, a(k=1,...,p) are

AR parameters, b is amplification factor of input excitation, v is
discrete white noise distributed by A(0,1). The assumption of sta-
tionarity inveolves a condition that all the roots of the characteristic
equation are less that 1 in absolute value. The parameters of AR
are estimated using the Yule-Walker equations (Box and Jenkins,
1970). Then, we have L = p + 2 parameters: m, b, a; (k =1,...,p),
and the L-dimensional vectors represent stationary segments of a
random process. In (Sammon, 1969) the algorithm of simultaneous
nonlinear mapping of multidimensional vectors onto the plane is
presented. Let us denote these vectors by X;, i = 1,..., M. The
L-dimensional vectors X; are mapped onto the plane into two-
dimensional vactors Y;, i = 1,..., M. The main requirement of map-
ping the L-dimensional vectors into two-dimensional vectors is to
preserve the inner structure of distances between the vectors. This
is achieved using a nonlinear mapping procedure.

In our case it is necessary to map the L-dimensional vectors
into two-dimensional vectors nonlinearly and sequentially in order
to process the sequentially received data.

Solution of the problem. While realizing sequential non-
linear mapping first of all we have to nonlinearly map M vectors
(M 2 2) simultaneously. Afterwards we need to map sequentially
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and nonlinearly the received parameters vectors and, in such a way,
to clusterize the stationary segments of 2 random process or to
watch the present state of a dynamic object, to detect its changes
and deviations from it for a practically unlimited time. In order
to formalize the method we denote by N this practically unlimited
number of arriving vectors.

Thus, let us have M + N vectors in the L-hyperspace. We de-
note them X,,i=1,...,.M; X;,j=M+1,..., M + N. M vectors are
already simultaneously mapped into two-dimensional vectors Y;.
i=1,...,M. Now we need to sequentially map the L-dimensional
vectors X; into two-dimensional vectors Yj, j = M +1,... . M + N,
Here the nonlinear mapping expressions will change into sequen-
tial nonlinear mapping expressions respectively. First, before per-
forming iterations it is expedient to put the two-dimensional vec-
tors being mapped in the same initial conditions, i.e., yjx = o,
j=M+1,... M+ N; k=12 Note that in the case of simultaneous
mapping of the first M vectors, the initial conditions must be cho-
sen in a random way (Sammon, 1969). Let the distance between
the vectors X; and X; in the L-hyperspace be defined by df, and on
the plane - by df; respectively. This algorithm uses the Euclidean
distance measure, because if we have no a priori knowledge con-
cerning the data: we would have no reason to prefer any metric
over the Euclidean metric (Sammon, 1969).

. Next, we compute the normalized error of distances E.

M -1 M
Ej= Zd;-‘;) z(dfj‘ ), )

For correct mapping we have to change the positions of vectors Y;,
i=M+1,...,M + N, on the plane in such a way that the error E;
be minimal.

This is achieved by using the steepest descent procedure. After
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the r-th iteration the error of distances will be

M -1 M
0 =(2d) L -aerm, (3)

i=l ix}l

J=M+1,... ,M+N.

here
: 2 /2
di(r) = (E{y-‘k - wk(r)]’)
k=1 (4)
i=1,.... M, j=M+1,... M+ N,
During the r+ 1 iteration the coordinates of the mapped vectors ¥;

will be
yir(r + 1) = yje(r) = FAju(r),

5
=M+, .. M+N;, k=12 %)

where

9E;(r) [|0°E;(n)]
bur(m/ 18 |
F is the coeflicient for correction of the coordinates. and it is defined
empirically to be F = 0.35;

Ajk(r) =

(6)

\
8E; < - ,
g = F L @)D @)
JE; = -1 2 -1 -1
7N =H§(d;-',~d?,-) {D-CH&) M1+ D)™ (®)

wheré

M -1
H=—2(dej) i D=dj;~-dY; C = yjx — %k.
i=1
When E; < ¢, where ¢ is chosen under concrete conditions, the

iteration process is over and the result is shgwn on the PC screen.
In fact it is enough ¢ = 0.01. In order to have equal computing time
for each mapping we can execute constant number of iterations. In
practice it is enough I = 30.
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Sequential clusterization of random processes. The se-
quential nonlinear mapping can be applied to sequential clusteriza-
tion of random processes or formation of clusters. A real acoustic
sigiial has been received, which was in fact a locally-stationary one,
and in discrete segments 1024 long it was stationary. The signal
was approximated in the segments by the sixth order AR model.
For each segment the AR parameters a, (k = 1,...,6), the ampli-
fication factor of input excitation b, and segment average m were
estimnated. Then, L=6+2=8 - dimensional vectors, representing
the locally-stationary segments of the acoustic signal, were mapped
onto the plane.

20 vectors, as if belonging to two acoustic signal classes, were
-involved in the experiment, besides, in all cases the first class was
represented by the vectors numbered from 1 to 10, and the second
class ~ from 11 to 20, respectively. Note that the first M vectors,
mapped simultaneously, are denoted in Fig. 1 and Fig. 2 by mark
x with the index which means the vector’s number. The later
received vectors, mapped sequentially, are denoted by mark + with
the respective index. Besides, in all cases there was 30 iterations.

We present two cases of mapped vectors, which are taken from
(Montvilas, 1990). In Fig. 1 the results of mapping of 20 vectors are
presented, when affer simultaneous mapping of M = 19 vectors (10
from the first clasé and 9 vectors from the second one) the vector
number 20, as if received later, was mapped, i.e., N = L.

In Fig. 2 the case of real sequential clusterisation is presented,
i.e., after simultaneous mapping of the minimal amount M = 2 of
initial vectors, belonging to the first class, the remaining N = 18
vectors (8 from the first class and 10 from the second one) were
ma.pped sequentxally

While ana.lyzmg Fig. 1 and Fig. 2 where different cases of non-
linear mapping of the set of the same vectors are presented, we see,
that vector number 2, as if belonging to the first class, is distant
from other vectors of the same class, i.e., the properties of this
acoustic signal segment are different from the properties typical
of the first class. Thus, we can reject the vector number 2 while
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Fig. 1. The view of the mapped vectors of two classes =+
10,11 +20), when M =19, N = 1.
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Fig. 2. The view of the same vectors mapped sequentially,
when M =2, N=18 o
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forming the classifier. As it turned out later, the acoustic signal
segment number 2 was really spoiled by the sensor.

Sequential detection of many abrupti or slow changes in
several unknown states of dynamic systems. We can apply
the sequential nonlinear mapping in creation of an essentially new
method for sequential detection of many abrupt or slow changes
in several unknown properties of random processes, as well as for
watching the states of dynamic systems or technological processes
and detecting their various changes.

Let a dynamic system (DS) be in any state s; of the set of
possible states: s; € S. We can watch L parameters at the output
of DS. Those parameters can be of any physical nature (then we
must introduce the scale coefficient for each parameter). A DS can
be described by some proper mathematical model, too, e.g., AR
(1). Then we have L = p+ 2 parameters: m,b,ax (k = 1,...,p) as
well, estimated from locally-stationary segments 256 long of the
observed discrete process. DS states may be unknown. A DS may
change its states abruptly or slowly. We need to map sequentially

' ponlinearly the L-dimensional vectors, representing the states, into
two-dimensional vectors in order to reflect the present system state
by some mark on the PC screen and, having ih mind the existence
of particular states, to identify the current state, a deviation from
it or a transfer tof other state when the mark changes its position. -

We present some simulated experiments. At first we heve =
case when the D§ has three states: S = 3. The D5(3) is described
by the 3-rd-order AR with the parameters (see Tabie 1).

Table 1. The AR parameters of the states 1+ 3 of DS(3)

- STATE ap ay da b
1 0.30 0.10 0.10 1.0
2 0.10 0.60 0.40 1.0
4 —0.50 -~0.10 0.20 1.0

We detect the states of DS(3) at M + N = 12 time moments.
First we take such a case when the number of initial simultaneous
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mapping of state vectors is equal tothe number of stationary states
of the DS(3): M = S =3, and during the time moments M =1+3
the DS(3) passes through all its possible states S. Then the view
on the screen is "fixed” from the very beginning because of the
automatic scale of coordinates. After that we detect the states of
DS(3) at the time moments N = 4 + 12 sequentially. ‘According to
the conditions of the experiment a priori the states of DS(3) are
known at the time moments (see Table 2).

Table 2. The states of DS(3) at the time moments
M+N=3+9=12

MAPPING | SIMULTAN (3) SEQUENTIAL (j)

MARK . — ,
TIME

MOMENT | 1 |2 |3 [415]6|7(8]9 |10 11 {12
STATE 1 12 |3 |1(3]l2]211 (113132

In Fig. 3 the results of mapping are presented, where at the first
M = 3 time moments state vectors, mapped simultaneously, are
denoted by mark x with the index which means the time moment
number, and the state vectors, mapped sequentially, are denoted
by mark + with the respective index. ‘

In Fig. 4 the situation similar to that of Fig. 3 is presented, but
after time moment number 6 the DS(3) changed its state slowly,
and at time moment number 7 it was between the states number 2
and number 1.

Next, let us take another case. It is taken from (Montvilas,
1992). Now the DS has S = 4 stationary states. The DS(4) is
described by 3-rd-order AR with the parameters (see Table 3).

In this case the number of initial simultaneously mapped state
vectors will be M = 2 and not all the possible states of DS(4)
are involved. We detect the states of DS(4) at the time moments
M + N = 2+ 14 = 16. According to the experiment conditions the
states of DS(4) are known at the time moments (see Table 4).
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Fig. 8. The view on the PC screen of the mapped vectors of
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Fig. 4. The view on the PC screen of the mapped veétors of
DS(3) states for the second situation.
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Table 8. The AR parameters of the states 1+ 4 of DS(4)

STATE a; [ 5] as b
1 0.30 0.10 0.10 1.0
2 0.20 0.65 0.40 1.0
3 -0.50 0.30 0.40 1.0
4 ~0.30 -0.10 0.15 1.0

" Table 4. The states of DS(4) at the time moments
M+N=2+14=16

MAPPING | SIMULTAN () |. SEQUENTIAL (;)
MARK x P
TIME “

Mo 1 2 BubkhBlfoh203h4isl6
STATE 1 2 Bhhhekil3 3211342

The mapping results are presented in Fig. 5.

In Fig. 6 the situation similar to that of Fig. 5 is presented.
The difference is at time moment number 11, where a slow change
of the state of DS(4) took place, and DS(4) was between the states
number 3 and number 2. In Fig. 6 this situation is clear.

Conclusions. The considered sequential nonlinear niapping
of vectors from the L-hyperspace onto the plane can be applied to
sequential clusierization of random processes and visual formation
of clusters rejecting the spoiled elements.

The sequential nonlinear mapping enabled us to create the
essentially new method which allows us to sequentially detect many
abrupt or slow changes in several unknown properties of random
processes and to watch dynamic system or technological process
states, their abrupt or slow changes on the PC screen in fact with-
out time limitation. ‘ . ‘

At the very beginning, before sequential nonlinear mapping, it
suffices to map simultaneously only M =2 vectors.
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' Fig. 5. The view on the PC screen of the mapped véctors of
( DS(4) states for the first situation.
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Fig. 6. The view on the PC screen of the ﬁabped vectors of
DS(4) states for the second situation.
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