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Abstract. A review of electrocardiographic (ECG) data compressioD 
methods is presented. It shows what data compressioD t.echniques are &\,uJable 
&Dd what the implementatioD cODsiderationa &re for each technique. 
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1. Introd uction. There are many papers and books con
cerning data compression methods and their applications. In this 
paper we restrict our attention to the methods suitable for sig
nal compression, i,e., the case when data are signal samples. We 
present a review of c.ompression methods for one of such a data 
type-electrocardiograms (ECG). The review can be useful for ap
plications to another real signal, too. It describes the situation 
of data compression in general because most of the available data 
compression methods are tested on ECG. . 

The problem of digitized electrocardiogram compression arose 
toget~er with the computer analysis of ECG. A necessity to store 
and transmit a huge amount of data. stimulated investigators to a.p
ply available methods of data compression to compress ECG data. 
In each application there is a need to know what compression tech
niques are available and what the implementation considerations 
are for each technique. We present here a review of ECG data com
pression methods which is an obvious example of data compression 
applications for signal data. It illustrates the present situation in 
this area. and may be useful not only for the application of data 
compression methods to ECG but also to other signal as well. One 
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of the first publications on this subject is the paper by Cox et al" 
(1968) on the AZTEC algorithm, which uses the zero order inter
polator. At present, as far as we know, the number of publications 
on ECG data: reduction exceeds a hundred. The first publications 
were focussed OR the methods for compression of resting ECGs. 
Later on, in 80-ties new investigations were accomplished on the 
reduction of Hotter EeGs. Regardless of the type of ECG (resting, 
exercise or Holter) the motivation for data compression is the same 
- the necessity to store and transmit via telephone lines data of 
high density. 

The main principles applied to ECG data compression are the 
.foUowing: 

1. Bandwidth limitation and reduction of the sampling rate. 
2. Redundancy reduCtion, Le. reproducible data compression. 
3; Information reduction, i.e. irreversible data compression. 
The main aspects for evaluation of data compression methods 

&l"e: compr"!ssion ratio (CR), vari9us errors, computing expendi
ture, stability to transmission errors, portabiJity to other comput
ers. The. following errors are mainly used to describe the differences 
b,etween the original ECG X(n) and reconstructed ECG Y(n) ob
tained from the compressed data: , . . 

1. Absolute etror: . I 

R(n)::: IX(n)I-IY(n)l· 

2. Maximal absolute error: 

Mu R(n) = m:x [lX(n)I-IY(n)l1· 

3. Relative error: 

RE(n) = X(n) - Yen) . 
. Mu [X(n)] 

4 .. Root mean square error: 

RMS= 

on .2 E [X(n) - Yen)] 
,.=1 

m 
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5. Percentile root mean square difference error: 

m 2 L [X(n) - Yen)] 
PRD = n=! m ·100. 

L [X(n)J2 
n=! 

It is not sufficient to use only one of these errors to evaluate the 
performance of a compression procedure. Usually we must estimate 
several of them. 

The compression ratio (CR) is usually defined as NIAf, where 
N is the numbN of input samples, and At is the number of recon
structed ECG samples. 

In Fig. 1.1 we have classified the available ECG data compres
sion techniques which are reviewed further by such a scheme. 

2. Bandwidth limitation and reduction of sampling ra
te. The problem of what frequency limits are to be taken has 
been the subject of discussion for many years (Kerwin, 1953; Lang
ner, 1960; Reynolds, 1967; Flowers, 1971; Golden, 1973; Anderson, 
1975; Cappelini, 1976; Berson, 1977 a); Berson, 1977 b); Sapozni
kov, 1977; Schick, 1978; Riggs, 1979; Goldberger, 1980; Bhargava, 
1981; Brag-Remchel, 1982; Nichols, 1985). However, this problem 
has been investigated in different aspects. The main question is 
what the upper frequency limit must be in order that ECG not be 
distorted. For example, Kerwin (1953) and Longner (1960) found 
the upper limit frequency 1300 Hz and 1000 Hz. In other investi
gation,s Flowers (1971), Goldberger (1980) studied the influence of 
the upper frequency on the reproducibility of slurs and notches in 
ECG and upper limits of approximately 500 Hz were set by them. 

The sampling rate for adequate digitizing ECGs was frequently 
discussed as well (Barr, 1977; Pahlm, 1979). Sampling rates of 250 
S/s (Samples/second) and 500 S/s are mainly used in digitization. 
Theoret ically these sampling rates should be sufficient, however, 
in ECG processing the signal usuall\ is not reconstructed by the 
theoretically required function sin (f) between sample points, but 
linear interpolation is used. For this reason short ECG waves are 
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omitted or estimated with great errors (Zywietz, 1983). Reasonable 
results (am plit ude errors < 10%) are obtained ifthe sarn pling inter
val is smaller than approximately 1/8 of the duration of the wave. 
The essential conclusion from this observation is that the sampling 
rate and measurability of minimum ECG waves are strongly inter
dependent. International Electrotechnical Comission and Ameri
can Heart Association (Pipberger. 19i5) recommend bandwidth of 
0.05 Hz - 250 Hz and the sampling rate of 500 Sls for process
ing the resting ECGs. Reduction of one of them would result in 
information reduction. 

3. Redundancy reduction. From the point of view of data 
encoding there are two reasons of ECG data redundancy - corre
lation between samples (neighbouring samples are not statisticaJly 
independent of each other) and dissimilar frequency of quantized 
signaJ amplitudes. 

3.1. Computation of differences. A widespread technique 
to reduce redundancy due to intersample correlation is to com
put.e first or second order differences between the samples. Let 
X{n) = Z1,"" ZN be a sequence of original samples. The first order 
differences 

(3.1.1) 

remove constant baseline amplitudes. The second order differences 
are 

(3.1.2) 

As can be seen from experimental results there is no great difference 
in code word lengths of first and second order differences [Zywictz, 
1989]. When using differences of ECG samples we suggest a mod· 
ification. A converter Ale gives ECG samples as a sequence of 
integers. One needs 2 bytes of memory for storage of an integer 
variable. Meanwhile in the experiments we noticed that after tak
ing differences, the values ~lZi are usually not large (very often 
they are < 256), most of them fit in one byte. Thus, we suggest 
separating numbers stored in first and second bytes. So instead of 
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{~l:Ci} we get two sequences bt(i)} and {JI2(i)} : 

{ 
Yt(i) = ~t:C.i 0\0 256, 

JI2(i) = [~1%d2561, 
(3.1.3) 

where [ ] is a mark of entire function and °\0 means the remainder 
from a division by 256. Thus, 

(') {~lZ;' ~t%i' 256, 
I't a = ri. ~l%i > 256, 

(3.1.4) 

(ri is the remainder frQm a division by 256). The variables 111 (i) and 
JI2(i) must be defined as characters (type "char") so their storage 
needs only one byte. The sequence {Y2(i)} consist of small values, 
for ECGs they are mostly zeros, and when one applies, for exam
ple, statistical methods of data compression (considered further) 
separately to the sequence {Yt(i)} and {Y2(i)}. a good compression 
ratio can be obtained. When restoring a signal one has to calculate 

(3.1.5) 

3.2. Prediction. Reduction in the variance of the distribution 
of successive differE1Ilces can be obtained if instead of the original 
successive differen~e only the difference between the ~2-\'alue and 
its prediction is sfjored. Prediction values A2Xn can be obtained, 
e.g., from a linear ~mbination of previous samples by the equation 

, 
. ~'z" = 2: Q/:A2 Z,,_I:. (3.2.1) 

I:=t 

The weight factors al: are chosen so that the expected mean square 
error .. between the original values and the estimated samples be
comes minimal (p is the number of samples employed for the pre
diction). An algorithm for calculating these factors can be found 
in the book of Box (1970), p. 72. 

3.3. Statistical coding. The redundancy due to dissimilar 
frequency distribution of amplitudes can be removed by the meth-
008 of statistical ooding. They operate by enooding symbols one 
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at a time. The symbols a.re encoded into output codes, the length 
of which varies dependent on the probability of the symbol. Low 
probability symbols are encoded using many bits, high probability 
symbols are encoded using fewer bits. All statistical methods of 
data compression use the estimates of symbol probabilities. We 
shall mention three most important statistical methods-Huffman, 
Shannon-Fano and arithmetic coding. 

HufJman method (Huffrnan, 1952; Apiki, 1991) is probably the 
best-known technique of data compression. It works on the premise 
that some symbols are used more often than others in data repre
sentation. Hutfman coding formalizt>s the idt>a of relating the sym
bols length to the probability of a symbol's occurrence_ It requires 
to have a table of probabilities (estimates) before you begin com
pressing of data. The compressor and decompressor can construct 
an encoding tree with this probability information. This tree is Cl. 

binary tree with olle leaf for each symbol. To construct the tree 
the compressor starts with the two symbols of lowest probability. 
It then combines these two as two leaf branches under a node; this 
node, in turn, is assigned the sum of the two probabilities. The 
compressor then consideres this node along with the rest of the 
symbols in the probability list and it again selects the two least 
probable items. It continues to build and combine node until it 
builds up a single tree, with the probability at the root equal to 1. 
The resulting tree has the leaves of varying distance from the root. 
The leaves that represent the symbols with the highest probability 
are closest to the root, while those with the lowest probability are 
most -away. To encode a symbol, the compressor finds the path 
from the root of tree to the symbol's leaf. 

EXAMPLE 1. Let us have the probability Table 3.3.1. 

Table 3.3.1. Probabilities of symbols 

Symbol A B C D E F G H 

Probability 0.22 0.2 0.16 0.16 0.1 0.1 0.04 0.02 

Computations to construct a tree are carried out in such a way: 



0.22 0.22 0.22 0.26 0.32 0.42 0.58 } 1 
0.2 0.2 0.2 0.22 0.26 0.32 } 0.42 
0.16 1.16 1.16 0.2 0.22 } 0.26 
0.16 0.16 0.16 0.16 } 0.2 
0.10 0.10 0.16 } 0.16 
0.10 0.10 } 0.10 
0.04 } 0.06 
0.02 

The corresponding binary tree is presented in Fig. 3.3.1. 

Fig. 3.3.1 Huffm,ls.n Dinary tree. 
! 

Thus, the corresp~nding codes of symbols a.re as described in Ta
ble ~.3.2. 

Table 3.3.2. Hufl'man codes 

symbol A B C D E F G H 
code 0.1 00 111 110 100 1011 10101 10100 

When encoding the text consisting of these symbols we shall max
imally save bits if use this table. 

Shoflnon-Fono method (Dmitryjev, 1989, p. 186) is dose to 
Hufl'man method. The probabilities of symbols and code length 
are related but the procedure of prescribing codes is different. At 
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first all the probabilities are lined up from the greatest to the lowest. 
Afterwards the probabilities are devided into two groups. Thus the 
sum of probabilities of both groups will be equal (or approximately 
equal). For all symbols of the first group 1 is prescribed, for all 
symbols of the second group-O. Then, each group is devided into 
two groups again. For each symbol of the first group 1 is prescribed 
again, for each symbol of the second group 0 is prescribed. We go 
on deviding until only one symbol remains in each group. 

EXAMPLE 2. Let us consider the same example but construct 
the codes according to Shannon-Fano method: 

A 0.22 } 1 } 1 
B 0.20 1 } 0 
C 0.16 0 } 1 } 1 
D 0.16 0 1 } 0 
E 0.10 0 

} 
0 1 

F 0,.10 0 0 
} 

0 } 1 
G 0.04 0 0 } 0 } O} 1 
H 0.02 0 0 0 O} o· 

The resulting codes are presented in Table 3.3.3 

Table 3.3.S. Shannon-Fano codes 

symbol A B C D E F G H 
code 11 10 011 010 001 0001 00001 00000 

One may get different Shannon-Fano codes when using the same 
probability table because of freely chosen groups. 

Arithmetic coding (Witten. 1987; Nelson, 1991) bypasses the 
idea of replacing an input symbol by a specific code. Instead~ it 
takes a stream of input symbols and replaces it by a single fioating 
point output number. The longer (and more complex) the message 
the more bits are needed in the output number. The output from 
an arithmetic coding process is a single number less than 1 and 
greater or equal to O. To construct the output number the symbols 
being er: coded have to have set probabilities assigned to them. 
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EXAMPLE 3. Let us have to encode the message BILL GATES 
(the example from Nelson, 1991). Then the estimates of probabil
ities are like Table 3.3.4. 

Table 3.3.4. Estima.tes of probabilities 

Symbol Estimate of Range probability 
space 0.1 0-0.1 

A 0.1 0.1 - 0.2 
B 0.1 0.2 - 0.3 
E 0.1 0.3 - 0.4 
G 0.1 0.4 - 0.5 
I 0.1 0.5 - 0.6 
L 0.2 0.6 - 0.8 
S 0.1 0.8 - 0.9 
T 0.1 0.9 - 1 

Once the character probabilities are known the individual symbols 
need to be assigned a range along a "probability li ne". It doesn't 
matter which characters are assigned which segment of the range 
as long as it is done in the same manner by both the encoder and 
the decoder. The nine-chara.cter symbol set used here would look 
like in Table 3.3.4~' 

The most sig~ificant portion of the arithmetic coded message 
belongs to the fitst symbol to be encoded. When encoding thE' . 
messa.ge BILL GATES, the first symbol is B. For the first character 
to be decoded prope.rly, the final coded message has to be a ,number 
greater than or equal to 0.2 and less than 0.3. To encode this 
number, we keep the track of the range within which this number 
could fall. So after the first character is encoded, the low end of this 
rang~ is 0.2 and the high end is 0.3. During the rest of the encoding 
process, each np.w symbol to be encoded will f\lrther restrict the 
possible range of the output number. The next chara.cter to be 

. encoded, I, owns the range 0.5 through 0.6. We say that I owns 
the range corresponding to 0.5 - 0.6 in a new, subrange of 0.2 -
0.3. This means that the new encoded number will have to fall 

somewhere in the 50 to 60th percentile of the currently established 
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range. Applying this logic will further restrict our number to range 
between 0.25 and 0.26; the next interval will be 0.256 - 0.258, etc. 
until we encode the last symbol: 

B 0.2 
I 0.25 
L 0.256 
L 0.2572 

0.25720 
G 0.257216 
A 0.2572184 
T 0.25721676 
E 0.257216772 
S I 0.2572167752 I 

0.3 
0.26 
0.258 
0.2576 
0.25724 
0.257220 
0.2572168 
0.2572160 
0.257216776 

The final low value 0.2572167752 will be the code of our message. 
Decoding is the inverse procedure. The range is expanded in 

proportion to the probability of each symbol as it is extracted . 
. We briefly reviewed the main ideas of the statistical methods 

. for data compression. In practice these methods are often used 
together in order to get a greater compression ratio. 

4. Irreversible data compression. The methods which 
partly reduce information give greater compression. Such meth
ods are called irreversible because after the compression ECG data 
cannot be exactly reproduced. Among the irreversible data com
pression methods one can exclude a group of methods which use 
mathematIcal transformation-Fourier, Karhunen-Loeve, etc. 

4 . .1. Amplitude truncation. The amplitude truncation -
an increase of quantization by an amplitude step - considerably 
increases the compression ratio and decreases the code word length 
(the number of bits per sample). Basically the amplitude precision 
is determined by the quantization level of the A/C converter. The 
American Heart Association and Association for Advancement of 
Medical Instrumentation (American National Standard ... , 1982) al
low the amplitude quantization in 10l'V steps. In (The CSE Work
ing Party ... , 1985) there are recommendations to use a wave with 
the minimum amplitUde of 201'V. The problem of errors here is of 
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great importa.nce. From the medical point of view errors of 2 - 5% 
could be acceptable (Furth, 1988) and this accuracy can be main
tained by using 6 bits for amplitude quantization (Pipberger, 1975; 
American ... , 1982; Zywietz, 1989). We present Fig. 4.4.1 from the 
paper (Zywietz, 1989) where one can see an interesting dependence 
of truncation on the compression ratio, word length and errors. The 
data were the averages from ten digitally recorded EeGs a.nd the 
second succesive differences were encoded in 3,6 or 15 bits, respec
tively. The truncation being 3 with maximum amplitude error of 
4,.,V the average word length was 2 bits/So In the paper of An
drew et al. (1967) an adaptive data. compression algorithm has 
been described where for each sample only the most significant 6 

. bits (out of 12 A/C converter word) are used. The position of «) 

bit. is coded by additional 2 bits. The movable amplitude window 
provides a constant relative accuracy of digitized amplitudes. 

4.2. Zero order interpolator. One of the first algorithms 
on ECG compression AZTEC (Cox, 1968) is based on the zero 
order interpolator. An ECG signal is approximated by a stepped 
function, i.e., an amplitude is regarded constant as long as the 
signal remains within a lower and an upper threshold and only the 
number of samples and the mean value of the amplitude window is 

I 

stored. The compression ratio is reported to be approximately 10. 
I 

This algorithm haJ been extended (Furth, 1988) in order to obtain 
et. better approxim~tion of the ECG signal within the QRS-complex. 

'1.3. Spline ,,"pproximation. The main principle is to ap
proximate an ECG curve by straight line segments (Shakiri, 1981; 
Ishijama, 1983). An acceptable amplitude error can be preset and 
the error does not exceed this preset threshold. In 1988 Bertinelli 
suggested 8. sample skipping algorithm which is a modification of 
the spline approximation-not only amplitude but also time error 
limitation is done as well.. The area. subtended by original and 
reconstructed signal is maintainable within preset limits. 

4.4. Turning point algorithms. The algorithms are based 
on the analysis of ECG curvature. Specific turning points are se

lected and amplitude and time windows are used to a.pproximate 
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Fig. 4.1.1. Oependence of truncation on the compression ratio, 
word length and errors. 

the signal between the selected points (Muller, 1978; Lamberti, 
1988). CR is reported to be from 2 to 10. This basic concept of 
referring to turning points within the signal has been used and 
extended by several authors for development of other schemes. 
A combination of the AZTEC and the Turning point algorithm 
(Ahenstein, 1982) gave a eR = 8. Moody (1987) combined the 
turning point algorithm with the piecewise linear approxima.tion of 
the ECG signal (eR = 10). 

4.6. Delta mod ulation. The basic concept is prediction of 
the next sample by adding or subtracting a step value 4 and en
coding the sum or the difference into one bit: 

'" = tIn-1 ::I: 4. 
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k GRANULAR. ; ..- SLOPE OVERLOAD 
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Fig. 4.5.1. The performance of A modulation. 

Each sample as ~ integer needs 16 bits thu's, eR = 16 is pos
sible. However, t~ere are some problems with errors. Fig. 4.5.1 
depicts the perfor'mance and problems of this method (Zywietz, 
1989). Granular noise and slope overload are the limiting factors 
of application. By increasing the step size A one may reduce or 
avoid slope overload, but that increases the granular noise, a re
duction of A reduces the granular noise but increa..<;es a distortion 
by slope overload. Several adaptive schemes have been proposed. 
In the paper of Jayant (1984) step size is increased by 50% each 
time the A valuE' has the same polarity as in the previous sample 
(potential slope overload. region) and v.v. Coppellini (1976) has 
used a Varying step A, i.e., small At for signal parts in which high 
precision is· required and a larger A2 for other signal parts. At the 
RMS error = 1.8% CR was reported to be 6.3. 

4.6. 'fiansform coding. Transform coding is applied not to 
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the whole ECG records but only to representative cycles of ECG. It 
is a procedure where a block of N input samples is linearly trans
formed into a set of transform coefficients are then encoded for 
transmission and a reconstructio.l of the original signal z(n) is ob
tained using an inverse transform operation on thp..se coefficients. 

In matrix notation, let ; be a vector representing the ECG 
input sequence: 

z7'={z(i), i=O,l •...• N-l}. (4.6.l) 

The transform is given by 

w = Ai', ( 4.6.2) 

where A(N x N) is the transform matrix. The coefficients are en
coded and stored or transmitted. A reconstructed ECG is obtained 
by the inverse transformation 

;:: Bw, (4.6.3) 

where P = A -1. The columns of the matrix B bk (A: = 0, .. , J N -1) are 
calied the basis vectors and they determine the type of transforma
tion. This procedure allows data compression because the number 
of transform coefficients to be transmitted can be chosen M < N 
on the basis of M SE error allowed in the reconstruction. Apart 
from that, the coefficients can be quantized with fewer bits than 
that used to represent the samples of the original signal. Thus, the 
scheme in Fig. 4.6.1 describes thE' transform coding. 

Three main transformations have been used in ECG process
ing: ,principal components (Karhunen-Loeve), discrete Fourier 
(sometimes other version of this transformation - discrete cosine 
transformation - is used), and Walch transformation. The para
metric Fourier transformation of Poliakov et al (1986) should be 
mentioned where additional parameters are used to get a better 
approximation. 

Discrete Fourier transformation is kn<?wn best. The basis vec
tors are 

-1~ -1 -1' ( ."TT~·W .2(N-1)1U)' 
6rr = 1. eN, eN. . .. , eN, 
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Fig. 4.6.1 Data compression by transform codin~ 

k =0,1, ... ,N - L The transformation coefficients w(k), 1= 0,1, 
... , N - 1 are calculated by the formula 

N-l 

tv(k) = ~ L :t(m)e-i.u;t&, k = 0,1, ... , N - 1. 
",=0 

(4.6.4) 

The correspondintVinverse transformation is . 
, 
i N"'l I" .~ :t(m)::t: ~ w(c)e' ,m = 0, 1, ... , N-l. (4.6.5) 

1:=0 

Results of Fourier transformation application are presented in the 
paper of Reddy (1986). When PRD errors for complex QRS and for 
segment S-Q are estimated separately, P RDQRS < 5%, P RDs-Q < 

·10%,CR is reported to be -7.4. 
Karhunen-Loeve transformation minimizes the mean error of 

representation (4.6.3), therefore, it is regarded to be optimal. Many 
other transformations have been compared to it in the performance. 
Hotelling (1933) was the first to derive and publish this transforma
tion under the name "principal components". This was a discrete 
transformation. Karhunen (1947) and Loeve (1948) ha.ve devel
oped the corresponding continuous transforma.tion. At present the 
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discrete transformation is often called Karhunen-Loeve, too. In 
this transformation the basis vectors are eigenvectors of a signal 
covariance matrix. Thus, at first a cova.ri~e matrix is estimated 
by ECG data, afterwards the eigr :wedors of this matrix are calcu
lated. In order to calculate the transform coefficients OBe need to 
invert the matrix B formed of eigenvectors. Thus, this method 
is rather complicated, it requires many calculations, operations 
with large matrixes and. being optimal, it is useful for compari
son with othN methods (Poliakov, 1986). The point which makes 
the Karhunen-Loeve transformation experiments particularly suit
able at this moment is the present availability of tools for the easy 
manipulation with large matrixes (Zywietz. 1989). The data com
pression is obtained because only M(M < N) eigenvedors, that 
correspond to the AI highest eigenvalu(>s of the covariance matrix, 
are used to recover the signal. Many groups of researchers have ap
plied Karhunen-·Loeve transformation to various ECG data com
pression (Karlson, 1967; \\'omble. 1977; Hsu.1981; Shakin, 1981; 
Poliakov, 1986; Marcus, 1987; Moody, 1989). Because of different 
error limitations and different data it is difficult to compare the re
sults. Using Karhunen-Loeve transform for data. compression CR 
was obtained from 5 to 19. 

Walsh transformation (sometimes it is called Hadamard-
Walsh) uses a fixed transformation matrix corresponding to the 
set of basis orthonormal functions. For example, for N = 8 the 
transformation matrix is 

1 1 1 1 1 1 1 1 
1 1 1 1 -1 -1 -1 -1 
1 1 -1 -1 -1 -1 1 1 

Wn = 1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 -1 -1 1 -1 1 1 -1 
1 -1 1 -1 -1 1 -1 1 
1 -1 1 -1 1 -1 1 -1 

This matrix corresponds to orthonomal rectanlular basis functions 
described in Fig. 4.6.2. 
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Fig. 4.6.2. The first eight Walsh functions. 

The transformation 'is determined by. equations 

- 1 W -w= N NZ, 

i= W'·W. 

.. 

(4.6.6) 

Applications of the Walsh transformation to ECG described in the 
papers of Ahmed (1975) and Kuklinski (1983). CR is not reported. 
Though the implementation is feasible recons~ructed signals are 
degraded. 

The parametri~al approximation and its. application to ECG 
compression was developed by a group of authors (Poliakov, 1986). 
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The curve g[<po(t)} (from a family of curves), which approximates 
ECG, is searched for ECG as for parametrical curve z[<p(t)] .. Any of 
the transformations discussed earlier can be used for approximation 
but the authors used Fourieroperator. The parametrical function 
't'{t) is chosen satisfying the following condition: 

(4.6.8) 

w:here ..\ is const.. and ~n is Fourier operator, i.e., <p(t) is chosen so 
that the approximation not change the velocity of moving along the 
curve. Yet another choice of the parametrical function is possible, 
too. An algorithm of approximation is determined by three things: 

1) a choice of an approximation operator; 
2) a condition for the choice of a parametrical function;' 
3) an algorithm for the solution of (4.6,8). 

The authors indicated that the application of the parametrical de
scription increases the efficiency of transform (Ooding. If a cardiocy
de is determined by a fixed number of parameters the compression 
ratio possible is 20. 

While the methods described in sections 2,3,4.1 - 4.5 can be 
applied to complete ECG records, the transform coding is applied 
to single representative cycles of ECGs. Since no objective criterion 
for the truncation of the series after M terms is given in many 
instances, it makes no sense to compare the values of CR possibly 
obtained to the values of M chosen by reconstructed signals of 
different quality. Besides, it would be better to estimate the overall 
bit gain Nn/Mn which takes into account both the number n of bits 
used toquantize the input samples and the number m of bits used 
to repreSent the output coefficients. 

s. Conclusions. The decision what method is most suitable 
first of all depends on the further use of compressed and decom
pressed ECG data. 

If the data &re used in repeated quantitative analysis· and ~rial 
comparison, then high resolution data. are necessary. 

If the data. are used only for visual verifica.~ion ofthe processing 
result , then the reproducibility requirements can be lowered. 
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It must be found a compromise between the requirements for 
accuracy and the cost of compression. 

The redundancy reduction methods enable us to reproduce 
ECG so tha.t errors of each sample do not exceed the preassigned 

, threshold. Only ihese methods provide reproducible ECG records. 
The methods of section 4 are good for Holter ECG. The re

quirements for resting ECG are greater so the redundancy reduc
tion methods should be applied. For compression of resting ECG 
the methods described in 4.1 - 4.5 should be used only if the records 
are used for the visual verification of processing. The tolerable am
plitude errors are in order of ±40 - 50pV (0.5 mm) at ImVJcm 
amplitude codinglZywietz, 1989). 
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