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DATA COMPRESSION METHODS.
APPLICATION TO ECG
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Abstract. A review of electrocardiographic (ECG) data compression
methods is presented. It shows what data compression techniques are available
and what the implementation considerations are for each technique.
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1. Introduction. There are many papers and books con-
cerning data compression methods and their applications. In this
paper we restrict our attention to the methods suitable for sig-
nal compression, i.e., the case when data are signal samples. We
present a review of compression methods for one of such a data
type-electrocardiograms (ECG). The review can be useful for ap-
plications to another real signal, too. It describes the situation
of data compression in general because most of the available data
compression methods are tested on ECG. ’

The problem of digitized electrocardiogram compression arose
together with the computer analysis of ECG. A necessity to store
and transmit a huge amount of data stimulated investigators to ap-
ply available methods of data compression to compress ECG data.
In each application there is a need to know what compression tech-
niques are available and what the implementation considerations
are for each technique. We present here a review of ECG data com-
pression methods which is an obvious example of data compression
applications for signal data. It illustrates the present situation in
this area and may be useful not only for the application of data
compression methods to ECG but also to other signal as well. One
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of the first publications on this subject is the paper by Cox et al
(1968) on the AZTEC algorithm, which uses the zero order inter-
polator. At present, as far as we know, the number of publications
on ECG data reduction exceeds a hundred. The first publications
were focussed on the methods for compression of resting ECGs.
Later on, in 80-ties new investigations were accomplished on the
reduction of Hotter ECGs. Regardless of the type of ECG (resting,
exercise or Holter) the motivation for data compression is the same
— the necessity to store and transmit via telephone lines data of
high density. .

The main principles applied to ECG data compression are the
following: . y

1. Bandwidth limitation and reduction of the sampling rate.

2. Redundancy reduction, i.e. reproducible data compression.

3. Information rediiction, i.e. irreversible data compression.

The main aspects for evaluation of data compression methods
are: compression ratio (CR), various errors, computing expendi-
ture, stability to transmission errors, portability to other comput-
ers. The following errors are mainly used to describe the differences
‘between the original ECG X(n) and reconstructed ECG Y (n) ob-
tained from the compressed data:

1. Absolute e‘trorf

Lo
b R(") = X(n)| =Y (n)].
2. Maximal absolute error:

Max R(n) = max [|X(n)| ~ [¥ (n)]].

3. Relativé error:
_ X(n)=Y(n)
RE( = Vax xX(m)]

4." Root mean square error:

Jiwm-nm’
RMS =\ 2=L .

m
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5. Percentile root mean square difference error:

> [X() - ¥(m))?
PRD =221 _ -100.
ngl [(X(n)}?

It is not sufficient to use only one of these errors to evaluate the
performance of a compression procedure. Usually we must estimate
several of them.

The compression ratio (CR) is usually defined as N/M, where
N is the number of input samples, and M is the number of recon-
structed ECG samples.

In Fig. 1.1 we have classified the available ECG data compres-
sion techniques which are reviewed further by such a scheme.

2. Bandwidth limitation and reduction of sampling ra-
te. The problem of what frequency limits are to be taken has
been the subject of discussion for many years (Kerwin, 1953; Lang-
ner, 1960; Reynolds, 1967; Flowers, 1971; Golden, 1973; Anderson.
1975; Cappelini, 1976; Berson, 1977 a); Berson, 1977 b); Sapozni-
kov, 1977; Schick, 1978; Riggs, 1979; Goldberger, 1980; Bhargava,
1981; Brag-Remchel, 1982; Nichols, 1985). However, this problem
has been investigated in different aspects. The main question is
what the upper frequency limit must be in order that ECG not be
distorted. For example, Kerwin (1953) and Longner (1960) found
the upper limit frequency 1300 Hz and 1000 Hz. In other investi-
gations Flowers (1971), Goldberger (1980) studied the influence of
the upper frequency on the reproducibility of slurs and notches in
ECG and upper limits of approximately 500 Hz were set by them.

The sampling rate for adequate digitizing ECGs was frequently
discussed as well (Barr, 1977; Pahlm, 1979). Sampling rates of 250
S/s (Samples/second) and 500 S/s are mainly used in digitization.
Theoretically these sampling rates should be sufficient, however,
in ECG processing the signal usually is not reconstructed by the
theoretically required function sin (%3 between sample points, but
linear interpolation is used. For this reason short ECG waves are
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omitted or estimated with great errors (Zywietz, 1983). Reasonable
results (amplitude errors < 10% ) are obtained if the sampling inter-
val is smaller than approximately 1/8 of the duration of the wave.
The essential conclusion from this observation is that the sampling
rate and measurability of minimum ECG waves are strongly inter-
dependent. International Electrotechnical Comission and Ameri-
can Heart Association (Pipberger, 1975) recommend bandwidth of
0.05 Hz ~ 250 Hz and the sampling rate of 500 S/s for process-
ing the resting ECGs. Reduction of one of them would result in
information reduction.

3. Redundancy reduction. From the point of view of data
encoding there are two reasons of ECG data redundancy - corre-
lation between samples (neighbouring samples are not statistically
independent of each other) and dissimilar frequency of quantized
signal amplitudes.

3.1. Computation of differences. A widespread technique
to reduce redundancy due to intersample correlation is to com-
pute first or second order differences between the samples. Let
X(n) = z4,...,zx be a sequence of original samples. The first order
differences

Alz,' = Zigl — X§ (3.1.1)

remove constant baseline amplitudes. The second order differences
are

Aqxz; = A.]3i+l -Az; = Ziga ~— 2:,'.“ + z;. (3.1.2)

As can be seen from experimental results there is no great difference
in code word lengths of first and second order differences [Zywictz,
1989]. When using differences of ECG samples we suggest a mod-
ification. A converter A/C gives ECG samples as a sequence of
integers. One needs 2 bytes of memory for storage of an integer
variable. Meanwhile in the experiments we noticed that after tak-
ing differences, the values A;z; are usually not large (very often
they are < 256), most of them fit in one byte. Thus, we suggest
separating numbers stored in first and second bytes. So instead of
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{A1z;} we get two sequences {y (i)} and {y(i)} :

{ 31(3) = Ayz; °\o 256,
w(i) = [A12:/256],

where [ ] is a mark of entire function and °\; means the remainder
from a division by 256. Thus,

(3.1.3)

Az, Az €256,

ne) = {re, Auzi > 256, (3.14)

(ri is the remainder from a division by 256). The variables y, (i) and
y2(i) must be defined as characters (type "char™) so their storage
_needs only one byte. The sequence {y;(i)} consist of small values,
for ECGs they are mostly zeros, and when one applies, for exam-
ple, statistical methods of data compression (considered further)
separately to the sequence {y (i)} and {y:(i)}, a good compression
ratio can be obtained. When restoring a signal one has to calculate

Ayz; = (i) 256 + w1 (). (3.1.5)

3.2. Prediction. Reduction in the variance of the distribution
of successive differences can be obtained if instead of the original
successive difference only the difference between the Aj-value and
its prediction is stored. Prediction values A,%, can be obtained,
e.g., from a linear combination of previous samples by the equation

P
Arz, = Z arNazZp-k. " (3.2.1)
k=1

The weight factors a; are chosen so that the expectéd mean square
error between the original values and the estimated samples be-
comes minimal (p is the number of samples employed for the pre-
diction). An algorithm for calculating these factors can be found
in the book of Box (1970), p. 72.

3.3. Statistical coding. The redundancy due to dissimilar
frequency distribution of amplitudes can be removed by the meth-
ods of statistical coding. They operate by encoding symbols one
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at a time. The symbols are encoded into output codes, the length
of which varies dependent on the probability of the symbol. Low
probability symbols are encoded using many bits, high probability
symbols are encoded using fewer bits. All statistical methods of
data compression use the estimates of symbol probabilities. We
shall mention three most important statistical methods-Huffman,
Shannon-Fano and arithmetic coding.

Huffman method (Huffinan, 1952; Apiki, 1991) is probably the
best-known technique of data compression. It works on the premise
that some symbols are used more often than others in data repre-
sentation. Hutffman coding formalizes the idea of relating the sym-
bols length to the probability of a symbol’s occurrence. It requires
to have a table of probabilities (estimates) before you begin com-
pressing of data. The compressor and decompressor can construct
an encoding tree with this probability information. This tree is a
binary tree with one leaf for each symbol. To construct the tree
the compressor starts with the two symbols of lowest probability.
It then combines these two as two leaf branches under a node; this
node, in turn, is assigned the sum of the two probabilities. The
compressor then consideres this node along with the rest of the
symbols in the probability list and it again selects the two least
probable items. IL continues to build and combine node until it
builds up a single tree, with the probability at the root equal to 1.
The resulting tree has the leaves of varying distance from the root.
The leaves that represent the symbols with the highest probability
are closest to the root, while those with the lowest probability are
most away. To encode a symbol, the compressor finds the path
from the root of tree to the symbol’s leaf.

ExaMPLE 1. Let us have the probability Table 3.3.1.

Table 3.3.1. Probabilities of symbols

Symbol | A [B|C | D |E|F |G | H
Probability | 0.22 | 0.2 |0.16 |0.16 |0.1 |0.1 | 0.04 | 0.02

Computations to construct a tree are carried out in such a way:



64 Data compression methods

022 (022 [022 |02 [032 042 [058y]1
0.2 0.2 0.2 022 |02 {032 0.42}
- 0.16 1.16 1.16 | 0.2 022 Y| 0.26 }
016 |o0.16 |o016 | o0.16 | 02 }
010 | 010 | 0.16 }jo0.16 }
0.10 0.10 } 0.10 }
0.04 } 0.06
0.02

The corresponding binary tree is presented in Fig. 3.3.1.

Fig. 8.3.1 Huﬂ'mﬁn binary tree.
!

Thus, the corresptlanding codes of symbols are as described in Ta-
ble 3.3.2.

Table 8.8.2. Huffman codes

symbol |A |B | C |D |E | F G H
code | 0.1 |00 | 111 |110 | 100 | 1011 | 10101 | 10100

When encoding the text consisting of these symbols we shall max-
imally save bits if use this table.

Shannon-Fano method (Dmitryjev, 1989, p. 186) is close to
Huffman method. The probabilities of symbols and code length
are related but the procedure of prescribing codes is different. At
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first all the probabilities are lined up from the greatest to the lowest.
Afterwards the probabilities are devided into two groups. Thus the
sum of probabilities of both groups will be equal (or approximately
equal). For all symbols of the first group 1 is prescribed, for all
symbols of the second group~0. Then, each group is devided into
two groups again. For each symbol of the first group 1 is prescribed
again, for each symbol of the second group 0 is prescribed. We go
on deviding until only one symbol remains in each group.

ExaMPLE 2. Let us consider the same example but construct
the codes according to Shannon-Fano method:

A 0.22 1} 1
B 0.20 } 1} o
(o) 0.16 0 1 } 1
D 0.16 0 1 } 0
E 0.10 0 0 ) 1
F 0,.10 0 0 0} 1
G 0.04 0 0 } 0 0} 1
H 0.02 0 0 0 0} o
The resulting codes are presented in Table 3.3.3
Table 3.3.8. Shannon-Fano codes
symbol | A | B C D E F G H

code 11 {10 {011 | 010 | 001 | 0001 | 00001 | 00000

One may get different Shannon-Fano codes when using the same
probability table because of freely chosen groups.

~ Arithmetic coding (Witten, 1987; Nelson, 1991) bypasses the
idea of replacing an input symbol by a specific code. Instead, it
takes a stream of input symbols and replaces it by a single floating
point output number. The longer (and more complex) the message
the more bits are needed in the output number. The output from
an arithmetic coding process is a single number less than 1 and
greater or equal to 0. To construct the output number the symbols
being er.coded have to have set probabilities assigned to them.
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EXAMPLE 3. Let us have to encode the message BILL GATES
(the example from Nelson, 1991). Then the estimates of probabil-
ities are like Table 3.3.4.

Table 8.3.4. Estimates of probabilities

Estimate of

Symbol probability Range

space 0.1 0-0.1
A 0.1 0.1 -0.2
B 0.1 02-03
E 0.1 03-04
G 0.1 04-05
I 0.1 0.5-0.6
L 0.2 0.6 -08
S 0.1 0.8-0.9
T 0.1 09-1

Once the character probabilities are known the individual symbois
need to be assigned a range along a "probability line”. It doesn’t
matter which characters are assigned which segment of the range
as long as it is done in the same manner by both the encoder and
the decoder. The nine-character symbol set used here would ook
like in Table 3.3.4. ’

The most significant portion of the arithmetic coded message
belongs to the first symbol to be encoded. When encoding the -
message BILL GATES, the first symbol is B. For the first character
to be decoded properly, the final coded message has to be a number
greater than or equal to 0.2 and less than 0.3. To encode this
number, we keep the track of the range within which this number
could fall. So after the first character is encoded, the low end of this
range is 0.2 and the high end is 0.3. During the rest of the encoding
process, each new symbol to be encoded will further restrict the
possible range of the output number. The next character to be
_encoded, I, owns the range 0.5 through 0.6. We say that I owns
the range corresponding to 0.5 - 0.6 in a new. subrange of 0.2 -
0.3. This means that the new encoded number will have to fall
somewhere in the 50 to 60th percentile of the currently established
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range. Applying this logic will further restrict our number to range
between 0.25 and 0.26; the next interval will be 0.256 — 0.258, etc.
until we encode the last symbol:

B 0.2 0.3
I 025 0.26
- L 0.256 0.258
L 0.2572 0.2576
0.25720 0.25724
G 0257216 0.257220
A 0.2572184 0.2572168
T 0.25721676 0.2572160
E 0.257216772 0.257216776
S |0.2572167752 |

The final low value 0.2572167752 will be the code of our message.
Decoding is the inverse procedure. The range is expanded in
proportion to the probability of each symbol as it is extracted.
"~ We briefly reviewed the main ideas of the statistical methods
- for data compression. In practice these methods are often used
together in order to get a greater compression ratio.

4. Irreversible data compression. The methods which
partly reduce information give greater compression. Such meth-
ods are called irreversible because after the compression ECG data
cannot be exactly reproduced. Among the irreversible data com-
pression methods one can exclude a group of methods which use
mathematical transformation-Fourier, Karhunen-Loeve, etc.

4.1. Amplitude truncation. The amplitude truncation -
an increase of quantization by an amplitude step — considerably
increases the compression ratio and decreases the code word length
(the number of bits per sample). Basically the amplitude precision
is determined by the quantization level of the A/C converter. The
American Heart Association and Association for Advancement of
Medical Instrumentation (American National Standard..., 1982) al-
low the amplitude quantization in 10V steps. In (The CSE Work-
ing Party ..., 1985) there are recommendations to use a wave with
the minimum amplitude of 20uV. The problem of errors here is of
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great importance. From the medical point of view errors of 2 - 5%
could be acceptable (Furth, 1988) and this accuracy can be main-
tained by using 6 bits for amplitude quantization (Pipberger, 1975;
American..., 1982; Zywietz, 1989). We present Fig. 4.4.1 from the
paper (Zywietz, 1989) where one can see an interesting dependence
of truncation on the compression ratio, word length and errors. The
data were the averages from ten digitally recorded ECGs and the
second succesive differences were encoded in 3,6 or 15 bits, respec-
tively. The truncation being 3 with maximum amplitude error of
4V the average word length was 2 bits/S. In the paper of An-
drew et al. (1967) an adaptive data compression algorithm has
been described where for each sample only the most significant 6
. bits (out of 12 A/C converter word) are used. The position of 6
bits is coded by additional 2 bits. The movable amplitude window
provides a constant relative accuracy of digitized amplitudes.

4.2. Zero order interpolator. One of the first algorithms
on ECG compression AZTEC (Cox, 1968) is based on the zero
order interpolator. An ECG signal is approximated by a stepped
function, i.e., an amplitude is regarded constant as long as the
signal remains within a lower and an upper threshold and only the
number of samples ,a.nd the mean value of the amplitude window is
stored. The oompx;&ssi'on ratio is reported to be approximately 10.
This algorithm ha$ been extended (Furth, 1988) in order to obtain
a better approximation of the ECG signal within the QRS-complex.

4.3. Spline approximation. The main principle is to ap-
proximate an ECG curve by straight line segments (Shakin, 1981;
Ishijama, 1983). An acceptable amplitude error can be preset and
the error does not exceed this preset threshold. in 1988 Bertinelli
suggested a sample skipping algorithm which is a modification of
the spline approximation-not only amplitude but also time error
limitation is done as well.. The area subtended by original and
reconstructed signal is maintainable within preset limits.

4.4. Turning point algorithms. The algorithms are based
on the analysis of ECG curvature. Specific turning points are se-
lected and amplitude and time windows are used to approximate
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Fig. 4.1.1. Dependence of truncation on the compression ratio,
word length and errors.

the signal between the selected points (Muller, 1978; Lamberti,
1988). CR is reported to be from 2 to 10. This basic concept of
referring to turning points within the signal has been used and
extended by several authors for development of other schemes.
A combination of the AZTEC and the Turning point algorithm
(Abenstein, 1982) gave a CR = 8. Moody (1987) combined the
turning point algorithm with the piecewise linear approximation of
the ECG signal (CR = 10).

4.5. Delta modulation. The basic concept is prediction of
the next sample by adding or subtracting a step value A and en-
coding the sum or the difference into one bit:

Yo =12 AL
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Fig. 4.5.1. The performance of A modulation.

Each sample as an integer needs 16 bits thl.{s, CR = 16 is pos-
sible. However, tﬁere are some problems with errors. Fig. 4.5.1
depicts the performance and problems of this method (Zywietz,
1989). Granular noise and slope overload are the limiting factors
of application. By increasing the step size A one may reduce or
avoid slope overload, but that increases the granular noise, a re-
duction of A reduces the granular noise but increases a distortion
by slope overload. Several adaptive schemes have been proposed.
In the paper of Jayant (1984) step size is increased by 50% each
time the A value has the same polarity as in the previous sample
(potential slope overload region) and v.v. Coppellini (1976) has
used a varying step A, i.e., small A, for signal parts in which high
precision is required and a larger A; for other signal parts. At the
RMS error = 1.8% CR was reported to be 6.3.

4.6. Transform coding. Transform coding is applied not to
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the whole ECG records but only to representative cycles of ECG. It
is a procedure where a block of N input samples is linearly trans-
formed into a set of transform coefficients are then encoded for
transmission and a reconstructio.a of the original signal z(n) is ob-
tained using an inverse transform operation on these coefficients.

In matrix notation, let ¥ be a vector representing the ECG
input sequence:

T = {z(i), i=0,1,...,N = 1}. (4.6.1)
The transform is given by
@ = AZ, (4.6.2)

where A(N x N) is the transform matrix. The coefficients are en-
coded and stored or transmitted. A reconstructed ECG is obtained
by the inverse transformation '

£ = By, (4.6.3)

where £ = A~!. The columns of the matrix Bb, (k=0,...,N-1) are
called the basis vectors and they determine the type of transforma-
tion. This procedure allows data compression because the number
of transform coefficients to be transmitted can be chosen M < N
on the basis of MSE error allowed in the reconstruction. Apart
from that, the coefficients can be quantized with fewer bits than
that used to represent the samples of the original signal. Thus, the
scheme in Fig. 4.6.1 describes the transform coding.

Three main transformations have been used in ECG process-
ing: principal components (Karhunen-Loeve), discrete Fourier
(sometimes other version of this transformation - discrete cosine
transformation - is used), and Walch transformation. The para-
metric Fourier transformation of Poliakov et al (1986) shauld be
mentioned where additional parameters are used to get a better
approximation. \

Discrete Fourier transformation is known best. The basis vec-
tors are '

b = (l, e-jzl%!, e—jiln\f&, iy c‘jl(’_v;h'm!),-
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Fig. 4.6.1 Data compression by transform coding

£k =0,1,...,N - 1. The transformation coefficients w(k), £ = 0,1,
..., N <=1 are calculated by the formula
S
w(k) = & Y z(m)es i, k=0,1,... N -1 (4.6.4)

m=0
The corresponding/inverse transformation is ~

§
{ N=1

zm)= Y w(k)ed F, m=0,1,..,N-1  (465)
k=0

Results of Fourier transformation application are presented in the
paper of Reddy (1986). When PRD errors for complex QRS and for
segment S-Q are estimated separately, PRDqrs < 5%, PRDs_.q <
-10%,CR is reported to be ~ 7.4.

Karhunen—Loeve transformation minimizes the mean error of
representation (4.6.3), therefore, it is regarded to be optimal. Many
other transformations have been compared to it in the performance.
Hotelling (1933) was the first to derive and publish this transforma-
tion under the name "principal components”. This was a discrete
transformation. Karhunen (1947) and Loeve (1948) have devel-
oped the corresponding continuous transformation. At present the
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discrete transformation is often called Karhunen-Loeve, too. In
this transformation the basis vectors are eigenvectors of a signal
covariance matrix. Thus, at first a covariance matrix is estimated
by ECG data, afterwards the eigcnvectors of this matrix are calcu-
lated. In order to calculate the transform coefficients ore need to
invert the matrix B formed of eigenvectors. Thus, this method
is rather complicated, it requires many calculations, operations
with large matrixes and, being optimal, it is useful for compari-
son with other methods {Poliakov, 1986). The point which makes
the Karhunen-Loeve transformation experiments particularly suit-
able at this moment is the present availability of tools for the easy
manipulation with large matrixes (Zywietz, 1989). The data com-
pression is obtained because only M(M < N) eigenvectors, that
correspond to the M highest eigenvalues of the covariance matrix,
are used to recover the signal. Many groups of researchers have ap-
plied Karhunen-Loeve transformation to various ECG data com-
pression (Karlson, 1967; Womble, 1977; Hsu, 1981; Shakin, 1981;
Poliakov, 1986; Marcus, 1987; Moody, 1989). Because of different
error limitations and different data it is difficult to compare the re-
sults. Using Karhunen-Loeve transform for data compression CR
was obtained from 5 to 19.

Walsh transformation (sometimes it is called Hadamard-
Walsh) uses a fixed transformation matrix corresponding to the
set of basis orthonormal functions. For example, for N = 8 the
transformation matrix is

2]

bt ot et b put et et st
o

1 1 1 1 1 1 |
1 1 1 -1 -1 -1 -1
1 -1 -1 -1 -1 1 1
1 -1 =1 1 1 -1 -1
-1 1 1 -1 -1 1
-1 -1 1 -1 1 1 -1
-1 1 -1 -1 1 -1 1
-1 | 1 -1 1 -1

Wa =

[a

This matrix corresponds to orthonomal rectangular basis functions
described in Fig. 4.6.2.
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The transformation is determined by equations

S T -
vENNE (4.6.6)

Applications of the Walsh transformation to ECG described in the
papers of Ahmed (1975) and Kuklinski (1983). CR is not reported.
Though the implementation is feasible reconstructed signals are
degraded. '

The parametrical approzimation and its application to ECG
compression wa.sVde‘veloped by a group of authors (Poliakov, 1986).
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The curve g[po(t)] (from a family of curves), which approximates
ECG, is searched for ECG as for parametrical curve z[p(t)].. Any of
the transformations discussed earlier can be used for approximation
but the authors used Fourier operator. The parametrical function
#(t) is chosen satisfying the following conditien:

!%(W(‘))l*‘-"I%An[s(w(t)); t]|, o (4.6.8)

where X is const. and A, is Fourier operator, i.e., ¢(t) is chosen so
that the approximation not change the velocity of moving along the
curve. Yet another choice of the parametrical function is possible,
too. An algorithm of approximation is determined by three things:

1) a choice of an approximation operator;

2) a condition for the choice of a parametrical function:’

3) an algorithm for the solution of (4.6.8).
The authors indicated that the application of the parametrical de-
scription increases the efficiency of transform coding. If a cardiocy-
cle is determined by a fixed number of parameters the compression
ratio possible is 20. ‘ :

While the methods described in sections 2, 3, 4.1 — 4.5 can be
applied to complete ECG records, the transform coding is applied
to single representative cycles of ECGs. Since no objective criterion
for the truncation of the series after M terms is given in many
instances, it makes no sense to compare the values of CR possibly
obtained to the values of M chosen by reconstructed signals of
different quality. Besides, it would be better to estimate the overall
bit gain Nn/Mn which takes into account both the number n of bits
used to quantize the input samples and the number m of bits used
to represent the output coeﬂicxents :

8. Conclusions. The decxslon what method is most suitable
first of all depends on the further use of compressed and decom-
pressed ECG data. :

If the data are used in repeated quantitative a.nalysxs and serial
comparison, then high resolution data are necessary.

If the data are used only for visual verifica.ion of the processing
result then the reproducibility requlrements can be lowered,
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It must be found a compromise between the requirements for
accuracy and the cost of compression.

The redundancy reduction methods enable us to reproduce
ECG so that errors of each sample do not exceed the preassigned
threshold. Only these methods provide reproducible ECG records.

The methods of section 4 are good for Holter ECG. The re-
quirements for resting ECG are greater so the redundancy reduc-
tion methods should be applied. For compression of resting ECG
the methods described in 4.1 - 4.5 should be used only if the records
Sre'used for the visual verification of processing. The tolerable am-
plitude errors are in order of +40 — 50uV (0.5 mm) at 1mV/em

amplitude coding (Zywietz, 1989).
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