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Abstract. As a rule, a measure is a mapping from a IT-field of sets into the 
eet of reals, or more generally, into some Banach space. A concept of set-valued 
measure (SV -measure) is introdilced in the paper being a specific mapping from a 
3~field of sets into a power set of a set. Properties of SV-measures are analyzed 
<l1nd illustrated on examples. Close relationship between SV-measures and a 
lJiieW nonstandard approach in artificial intelligence (AI) is explained. Then, the 
~onstruction of factorization of the measures is mentioned, a special class of IT­

quasiatomic SV-measures is defined and corresponding characterization theorem 
i:~ proved. This class involves SV-measures ranging in a countable set which were 
;:sed in modelling uncertainty in AI. It enables to answer one question arising in 
connection with this application. 

Key words: set-valued measure, factorization, quasi atom of se~valued 
u:JrLio:.8Ure. 

Introd uction. Presented paper deals with a notion of set­
valued measure (SV-measure). Domains of SV-measures coincide 
with domains of "ordinary" measures, i.e., they are C"-fields of sub­
ll\ets of a set. In contrast with classical measure theory, values of 
i!i.n SV~measure are members of a power set of a set called. target 
:Lelow. 

This article has two basic sources of motivation. The first 
one is in artificial intelligence. Bundy (1985) suggested a new ap­
proach to description of uncertainty in expert systems: degrees of 
uncertainty of propositions are described by means of subsets of 
:('Certain basic set (instead of numbers). This approach was followed 
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by Kra.mosil {1991} who introduced the notion of nonstandard B­
valued probability measure for similar purposes. 

The second motivation source is measure theory. We present 
here principal fea.tures of certain analogy of this theory. Let us re­
~all that a. measure is a mapping ascribing numbers to sets (namely 
to the elements of a O"-fields of sets). There .. re some ger,enu­
izations. for example Banach space-valued measures in functional 
analysis discussed by Dunford and Schwartz (1958) or (orthogo­
nal) stochastic measures in the theory of stochastic processes; Sel': 

Cram er and Lea.d.hetter (1967). Our approach is similar, hut we 
consider a mapping ranging in subsets of another set. 

We feel that there is some void which should be filled up by 
corresponding theory. Our concept CIl,n easily relate the above men­
tioned apparently remote .. reas. Nevertheless, it can he also con­
sidered as further alternative model of p:vhabHity (as !,t'vie';;ed in 
Fine (1973» or another attempt to change quantities of measure 
values cf. Pfanzag1 (1971). 

We shall show~ that an SV-measure is a O"-homomorphism of 
O"-fields. Maybe such a concept is treated somewhere in literature 
but we have no information about it. 

A principal felfi;ure of SV-measures is that they are eztensional; 
it means that the hteasure of the union of two sets can be obtained 

I 
explicitly from vwuesofmeasures of these components (similarly' 
for ~he difference and other set-theoretical operations). This is 
not valid in casei of "ordinary" measures and probably i~ is the 
main motivation point of above mentioned approaches in artificial 
intelligence. 

The aim of the article is not only to, define the concept of SV­
measure but alsO to deepen it by further more advanced concepts 
and some results arising in connection with new nonstandard ap­
proaches to modelling uncertainty in expert systems. 

A ·concept of SV-measure is introduced in the first section, 
various example of SV-measures are stated. It is'sh6wnthat an SV­
measure is a eT-homomorphism of eT-fields. Properties of coverings of 
a set applied in the paper are suminarized in the second (auxilia.ry) 
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section. As a rule, both description and characterization of an SV­
measure can be simplified using a simple factorization procedure 
stated in the third section. Further • notions useful for analysis of 
SV-measures, like null-sets and quasiatoms, are introduced in the 
fourth section. Our null-sets are similar to null-sets of ordinary 
measures, while quasiatoms resemble atoms-of ordinary measures. 

The last' two sections and appendixes are dealt with specific 
classes of SV-measures dosely related to description of uncertainty 
in expert systems mentioned above, Namel~,a concept of ,-qua­
siatomic SV-measure is i.i1troduced and discussed in the fifth sec­
tioI'l:' ' Complete characterization of (T-q"Jasiatomic SV-trieasuresis 
given. It enables us to derive a complete characteriza.tion of SV­
measures ranging in a. countable target; see the last (sixth) section. 
In Appendices we related our theory to the concept of noqstandard 
B-valued probability measure introduced by Kramosil (1991) and 
give an affirmative answer of a question from that work . 

. 1. Set valued measures. In this section we introduce the 
concept of set valued measure (SV-measure). Some examples of SV­
measures are given and basic properties are mentioned: We show 
that an SV-measure is a eT-homomorphism to eT-fields. At the end 
of the section we discuss a distinction between SV -measures and 
"ordinary" measures. Namely, in contrast with ordinary measures, 
the SV-measures could "save" the structure of underlying eT-field 
and they are extensional with respect to set-theoretical operations. 

DEFINITION 1. A tetrad ~ = (0, A, H, p) is called a space with a 
set-valued mea..'1ure p iff the following ~nditions are satisfied: 

(0,04) is a measurable space, (1) 

H is a set, (2) 

p : A - exp H, (3) 

for every A, BE A with An B = " it holds peA) n p(B) = e. (4) 

for every countable collection {Ai liE I} (5) 

of mutually disjoint measurable sets it holds: 



1'( UAi) = Up(Ai). 
'EI 'EI , 

The set H· will be called the targd of !It. 

We give five examples of spaces with SV-measures here. 

Example 1. (trivial SV-measul'e). Let (0,.4) be a measurable 
space and H be a set. By a trivial SV ·measure we understand the 
mapping lA : A -+ exp H ascribing empty set to each measurable set. 

Example 2. (identical SV.measure). Let (0,04) be a mea­
surablespace. Put H = 0 and define I' as the identity mll-pping 

. onA: 

p(A) =A for each AEA. 

Example 3. Let.4he the system of all at most countable 
subsets of the interval (0, 1) and their complements. Take any 
nonempty set H and define I' : A -+ exp H as follows: 

J'(A) = {' if A is.at most ~~table, 
, H otherwISe. 

I ' • 
It makes no problem, to see that «0,1),04, H,p) is a space with an 
SV -measure. ' . 

-Example 4~' (direct product of spaces ,with SV-measures). 
Let us consider a nonempty system 

(o,J,.AJ, HitPj). j E J 

of spaces with SV -measures and suppose that 0.;, j E J are mutually 
disjoint and Hit j E Jare mutually disjoint. 

Put 

and define the f1-field.4 on 0. by 
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A = { U Aj I V j E J : Aj E A;} = {A ~ 0 I V j E J : An 0; E A; }. 
jEJ 

The td.rg~t H is defined by 

Finally, for any A E A put 

Jl(A} = U Jl; (A n 0;). 
;EJ 

25 

As can be easily verified (0, A, H, Jl) is a space with SV-measure. 
In fact, Example 5 is a combination of the preceding ones. 

Example 5. Let Xl < X2 be two infinite cardinals. 
Let T1 , T2 , 1'3, .. ' be mutually disjoint sets having the cardinal­

ity X2. We put 

00 

0= u 1j, 
;=1 

Aj = 0' ({ D ~ 1j I card D ~ xI}) 

and 

. Let HI, H 2 , H3, ... be mutually disjoint sets and 

;=1 

At first, for each j = 1,2, ... define an SV-measure Jlj : A; -+ H; 
similarly as in Example 3: 

if card A; ~ Xl! 

otherwise. 



26 

To define p use the procedure from Example 4: 

00 

p(A) = UPi(An7j). whenever AEA. 
;=1 

Clearly (O,.A,H,p) is a space with SV-measure. 
In the rest of the presented paper we suppose that a space with 

SV-measure 

~=(O.A,H.p) 

is given. The only exception concerns Proposition 2 in the section ti. 
We shall show tha.t an SV-mea.sure preserves basic set-theore­

. tica.l operations. 

Lemma 1. Let A, B EA. Then 

p(B \ A) = p(B) \ peA) whenever A ~ B, (6) 

Proof. 

peA U B) = p(.A,) U p(B), 

peA n B) = peA) n p(B). 

a) It holds 'p(01 n p(0) : 0 by (4), i.e., #l(e).: 0. 

(1) 

(8) 

b) We prove (hat #leA U B) : #leA) U p(B) wheneve,r A n B = 0. 
We have ' 

peA U B): peA UB U'U'U ... ) = peA) U #l(B) Up(0) U ,.,.(0) u ... 

by (5)~ thus #leA U B) : peA) U #l(B) by a). 
c) We prove (6). Th~ sets peA) and #l(B \ A) are mutually 

disjoint according to (4), p(B) : peA) U #l(B \ A) according to b). 
Therefore p(B \ A) : p(B) \ peA). . 

d) We prove (7). Usin,g b) twice we obtain 

peA U B) = peA \ B) U p(A n B) U p(B \ A) :::; 

= [peA \ B) Up(An B)] U [peA n B) Up(B \ A)J = 
= peA) U p(B). 
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e) Let us consider the remaining case (8). It holds An B = 
n \ HO \ A] U [0 \ Bl}. Using it together with (6) and (7) we get 

peA n B) = p(O) \ {[p(O) \ peA)] U [P(O) \ p(B)]} = peA) n p(B). 

Precisely, p is a homomorphism of A into exp p(O): Such map­
pings have been studied in lattice theory. Therefore, p holds the 
following properties, cf. Birkhoff (1940), Sikorski (1960). 

Lemma 2. Let A, B EA. Tben 

p(0) = 0, 
A ~ B implies 'P(A) ~ p(B), 

p(B \ A) = p(B) \ peA), 

J.I(A) = p(B) iff p(AaB) = 0. 

(9) 

(10) 

(11) 

(12) 

Theorem 1. An SV-measure p is a cr-homomorphislD of A 
into exp p(O), i.e., p fulfils (6) and whenever An E A for all n E N 
then both 

(13) 

and 

(14) 

bold. 
Proof· 
a) Let us prove (13). Since the sets An \ v:;: AI: are mutually 

disjoint the last equality in 
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follows from (5). Hence by (11) and (7) we ha.ve 

( 
00 ) 00 r (n-1)] 

P nld An = nYl lP(An) \ p l:ld AI: 

= nVt [p(An) \ :Q P(Ak)] = nQ p(An). 

b) Using (13) and (11) we get 

{0,An) =+, Q(!l \ An)] 
00 00 

= p(O) \ U [p(O) \ p(A,,)] = n p(An) 
n=1 n=1 

which gives (12). 

COROLLARY 1. The range J.t(A) is a u-ring of subsets of H, more 
_precisely it is a (T-field of subsets of p(O) 

PropertiLs of SV-measures stated in Theo,rem 1 and Corollary I - _. 

1 express our phr4ise that SV-measures could "sa.ve" the structure 
of an underlying ~-field. 

Owing to S\{-measures the properties, they are extensional. 
E.g"t there exists, a concrete formula (namely (7» which express 
the value (of SV~me?sure) of the union of two sets by means of 
the values (of SV-measure) of these sets. Nevertheless, in case 
of "ordinary" measure p the value p(A U B) is not determined by 
values of p(A) and p(B) uniquely. Analogical situation concerns 
other set-the9retical oper~tions, as follows from (11), (13) and (14). 
These formulas show ext('nsionaliLY of SV-measure with respect to 
set-theoretical operations. They have no counterparts in classical 
measure theory. 

2. Equivalences determined by coverings. This section 
contains some auxiliary results on coverings of a set used later. 
We shall need special equivalence determined by a covering of the 
basic set 0 (resp. 1'(0» and the corresponding partitions of 0 (resp. 
1'(0». 
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DEFINITION 2. Let X be a nonempty set. A set M is called a 
covering of X, iff X = UMeM M. 

Moreover, any covering M of X determines the following equiv­
alence -M on X : if Z,y E X, then 

Z -M Y {:::::} [VM EM eitherz,y E M, or Z,y rt. M] 

The t;:t:t et all ..... M classes will be denoted by XM. 
(Ct Roblin (1947), Samorodnickij (1990) p.18-21 for details.) 
The classes of .... M equivalence have great importance for our 

f* ,dy, Clearly, XM isalso a covering of X and ...... M equals to -x . 
. M 

The following lemma summarizes basic properties of equiva.-
lence classes. 

J .. emma 3. Let M be a covering of X. 

a) The relation -M is an equivalence Oil X. 
b) Whenever M E M and u E XM, then either u f M. or unM = 

0. 
c) Let M be closed under the complement operation, i.e., 

X \ M E M for any M EM. Then 

u=nM=n M whenever u E XM , z E u. 
MEM MEM 
_t;M "EM 

d) D'(M) is a covering of X and -M equals to -.,(M)' 

Proof. Proof of a), b), c) is left to the reader. For sketch of 
the proof one can consult Rohlin (1947) or Samorodnickij (1990), 
Chapter 1, §4. 

For a proof of d) we consider z,y E X. 
If z ..... 6(M) Y then z -oM'y since D'(M);;2 M. 
If z ,.... M Y then there exists u E XM such that z, y E u. 
As {M S; X I u C M or u S; X \ M} is a C'-fie1d, for each 

M E C'(M) we have either u S; M or u S; X \ M. Therefore z -.,(oM) '!I-

3. Factorization of SV-measures. In this section we show 
that both SV-measure and target set could be modified in order to 
ensure that points of the new target are distingu.ishable by means of 
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the modified SV-measure. The construction is called factorization. 
It is possible to reconstruct the original SV-measure from its factor­
measure. 

Factorization can be applied to simplify both description and 
characterization of a particular SV-measure. 

It seems natural to call points z, y E p(O) p-separable if there 
exists A E A sucn that z E peA) and y rt. p(A), and in the opposite 
case to call them p-inseparq.ble. Certainly, it defines an equivalence 
on p(O). Clearly, points outside p(O) form a special c1a.~s which can 
be omitted (cf. Corollary 1). 

DEFINITION 3. The factor space p(Q)I'(.A) is denoted by H(p). 

The class in H(p) containing z E p(O) is denoted by i. For any 
A E A we set 

peA) = {i I z E peA)}. 

It makes no. problems to see from preceding results that the 
follo~ring holds. 

Proposition 1. The tetrad (O,.A,H(p),p) is a space with 
SV-measure. Mor,.eover, each different points u,V E H(p) are p­
separable. 

Further, I, ea.;iliy follows from Lemma 2. 

Lemma 4. a) Let A E A and U E H(p). Then either u ~ p(A), 
or unp(A} = 0. 

b) If u E H(p), then u = n AEA peA). 
_!;,,(A) 

In general, the members of new target fi(f') may not be p(A)­
measurable, i.e., the inclusion 

H(p) ~ peA) 

may not hold. Namely, consider a measurable space (O,A) such 
that some clas'ses of ..... .A equivalence are not A-measurable. If we 
define the space (O,A,H,p) with identical SV·measure p according 
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to Example 2, then H(p) equals the set ofall-..t-classes and p(A) = 
..4, i.e., H(p) ~ p(A) does not hold. 

The problem how to ensure that elements of H(p) belong to 
p(A) is postponed to the end of the next section. 

4. Null-sets, atoms and quasiatoms. Here, the class of 
null-sets on an SV-measure is introduced and shown to be a ~­
ring. Our null-sets are parallels of null-sets in classical measure 
theory. Further, the concepts of ana.tom and a quasiatom are 
defined. Our quasiatoms resemble atoms of ordinary measures. 
Several equivalent characterizations of .quasiatoms are given. In 
the rest of the section it is shown that under the assumption that 
the underlying ~-field A is countably generated, all classes in the 
factor space H(p) introduc~d above belong to p(A). 

DEFINITION 4. A set A E A is called a null-set iff p(A) = 0. The 
class of all null-sets will be denoted by}/(p). i.e., 

N(J.') = {A E.A I #A(A) = 0}. 

The structure of N(p) is characterized by the following lemma. 

Lemma 5. N(#A) is a ~-ring. 

Proof. a) Let A, BE N(p). Then p(A \ B) ~ p(A) = 0 by (lO) 
and consequently A \ BE N(#A). 

b) Let An E N(#A), nE N. Then #A( LJ:=1 An) = LJ:=1 p(An) = 0 
according to (12). Thus LJ:=1 An E N(p). 

DF;FINITION 5. Let (X, X) be a m.easurable space. A measurable 
set u E X is called an atom of X iff u j 0 and the only proper 
measurable (i.e., belonging to X) subset of u is the emp~y set. 

DEFINITION 6. A measurable set A E A is called a quasiatOffl of 
SV-measure p iff peA) is an atom of p(A). 

If A is an atom of A and p(A) j 0 then A is a quasiatom 
of p. (Namely, if u E p(A), then there is B E A with p(B) = u. 
Thus either A ~ B, or An B = 01 i.e., either p(A) ~ p(B) = u or 
0:;:; peA) n p(B) = p(A) nu). 
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On the other hand a quasi atom A of p may exist such that 
peA) #; p(B) holds for all atoms B of A.E.g., in Example 3 all 
atoms of.A are singletons of {1 and p( {z}) = , #; H = p(A) holds for 
a~l z E {1 a.nd for all quasiatoms A of p. 

There are several equivalent characterizations of qua.siatoms: 

Lemma 6. Let AEA. The following sta.tements a.re equiva­
lent 

,A is a quasia.tom of p (15) 

peA) #; 0 and Jor any A 2 B E A we have either (16) 

p(8) = p(A), or IJ(B) = 0 

peA) #; 0 and Jor any C E A we have either (17) 

p(A) ~ 1l(C) or p(A) n p(C) = 0 
p(A) E H(p). (18) 

Proof. a) Using (10) we easily derive that (15) implies (16). 
b) Suppose that A satisfies (16) and consider a set C E A. 

Hence the statement (16) yields (17) taking B = C n A and using 
(8). .' 

c) We prove ~ha.t· (17) imply (18). Let z E p(A). We shall 
show tha.t z = JI(~). Immediately we ha.ve i ~ peA) according to . 
Lemma 4. Convel"Sely take another point yE peA). Using (17) one 
has either {z,y} ~:p(A) ~ p(C) or {z,y}nll(C) ~ p(A)np(C) = 0 for 
each C E A. Hence y -I'(A) z, i.e., yE i and consequently Il(A) ~ z. 

d) Let p(A) E H(p). We shall show that A is a quasiatom 
of p. Necessarily p(A) :# 0. Suppose that B E A, p(B) #; 0 and 
p(B) ~ peA). Taking z E p(B) we have z ~ p(B) ~ p(A) = i 
accortting to Lemma 4. Hence p(B) = peA) and A is a quasiatom 
of p. 

The preceding lemma easily implies the following corollary. 

COROLLARY 2. If A, B E .A are quasiatoms of p, then we have 

either peA) =p(B) or (19) 
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and 

either p(AAB) =" or p(AnB) =". (20) 

The following lemma enables us to derive an easy sufficient 
conditions for measurability of all classes of the factor space H(p). 

Lemma T. Let X, Xl be a measurable space. If a tT-field X is 
c~untably generated, then X is the union.of all atoms ofX. 

Proof. Let 1) be a countable collection of generators of X. As­
sume without any loss of generality that 1) is a covering of X which 
is closed under the complement operation (i.e., X \ DE 1) for any 
DE 1). Hence, it suffices to show that XT) ~ X since X ::: UA6Xp A. 

Take A EXT). By Lemma 3, parts c and d, we get A = nDEl' D. 

But 1) is a countable set, thus consequently A EX. 
A,D 

COROLLARY 3. Let A be countably gene~ated, Then H(p) ~ 
p(A). Moreover. there exists a collection {T; liE I} of atoms of A 

. such that p(T;) ::f:. 0 holds for any i Eland 

jJ{Al::: n p(T;) 

takes place for each A E A. 

.EI T.,A 

Proof. By Lemma 7, n = Uiei Uj for the collection {Ui liE J} 
of all atoms A. Let us select a collection of atoms A such that 

{T; liE 1} = {u, I p( Ui) ::f:. 0, i E J}. 

Consider z E IJ(O). Let us denote }IV::: {D E V I z E IJ(D)} and 

B= n D. (21) 
DeW 

We prove that B E .A and z E p(B) hold. If D E 1), then 
n \ D E V, thus x E pen) = p(D) U pen \ D), i.e., W '# 0. The 
set 1) is countable and }IV ~ 1), i.e., B E .A by (21), thus p(B) = 
n DEl' p(D) "2 {x}. 

'"E .. (D) 



We prove that B is an atom of A. It holds ..... A =-1) by Lemm", 
3d, thus it suffices to prove tha.t if D E V, then either BeD, or 
BnD = 0. Ifz E JJ(D), then DEW, i.e., B S; D by (21). If z f/. JS(D), 
thenz E JJ(O \ D), i.e., 0\ DEW, so that B S; 0 \ D, i.e., BnD = 0. 
Thus BErn liE I} and z E Uer JJ(n) = JJ(O). 

We 'have proved that {n liE I} is a collection of atoms .A 
with property JJ(O) ;::: UE/ JJ(n). Let AEA. Obviously, JJ(A) ;2 
U 'EI JJ(11) a.nd 1'(0 \ A) ::> U "El J.I(n) take place. Moreover 

T,S;A - T.S;O \ A 

JJ(A) U p(n \ A) = 1'(0) ::; Uer JJ(n) and J.I(A) n JJ(O \ A) = •. 
Consequently, JJ(A) = n 'EI JJ(n). Hence we have immediately 

, . TiS;A 

H(JJ) = {JJ(Tt) liE I} S;JJ(A) which concludes the proof. 
The assumption 'that .A is countable generated cannot be omit­

ted . in Corollary 3. .E.g., in Example 3 atoms of .A coincide with 
single.tons of n a.nd J.I({z}) = 0 for any singleton z E O. Thus if 
JJ(A) #: 0, then JJ(A) = U 'EI J.I(n) cannot hold for any collection 

, ,T;S;A 

{Ti 1 i E I} of atoms of ..4 • 

. 5.Th~ characterization of u-quasiatomic SV -measures. 
A special class of SV-measu.res called u-quasiatomic SV-measures is 
introduced. A complete characterization of u-quasiatomic measures 
is given. This type .. of SV- measures is closely related to description 
of uncertainty in ~xpert systems (see Introduction). They are, in 
fact, generalizati4ns of measures introduced by Kramosil (1991), ' 
cf. Appendix A. j , 

DEFINITION i~ '.An SV-measure I' is called u-quasiatpmic iff 
there is an at most countable collection {n liE I} of qua.siatoms 
of I' satisfying 

JJ(O) = U J.I(Tt). (22) 
ieI 

DEFINITION 8. A collection {Tt liE I} is called 1'- admissible iff 
{n·1 i E I} is an at most countable colk.;tion of mutually disjoint 
quasi atoms of JJ and (22) takes place. 

Lemma 8. Tbe SV-measure JJ is u-quaSiatomic iD' a JJ-admi-
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ssible collection exists. 

Proof. Let {T! liE I} be at most countable collection of. quasi­
atoms of I' satisfying UiEl p(T[) = 1'(0). Without a loss of generality 
we can assume that p(Tt), i E I are different sets. Thus if i #: j, 
then 1'(77) n p(T}) = 0 by Corollary 2. We set T; = Tt \ Uj~l Tj for 

J~' 

all ; E I. Then T;, i E I are mutually disjoint. Moreover T; ~ Tt 
and 

peT;) = p(Tl) \ U p(r;) = p(Tl), 
JEI , ... 

i.e., T; are quasiatoms of I' and (22) takes place. 
A full characterization of er-quasiatomic SV-measures is given 

in the rest of the section. 

Theorem 2. Let (0, A. H, 1') be a space with er-quasiatomic 
SV-measure I' and {T; ! i E I} be ap-admissible collection. 

Let us denote B = N(p) and Hi = peT;) for all; E j. 
Then 

T; rl B f or any i E I, 

0\ Un EB, 
_El 

for any B E B, i E I we have B n T; E B, 

(23) 

(24) 

(25) 

A = er (B U {T; liE I}) , (26) 

VAEA:p(A)= U Hi, where IA={iEIIAnT;rlB}. (27) 
ielA 

Proof. (23) and (24) immediately follow from the definitions of 
er-quasiatomic SV-measure and of null-sets. (25) is obvious by (8). 
Thus (26) and (27) remain for a proof. Let us put 

:E = er (N(p) U {fi liE I}} 
for that goal. Of ,course, L ~ A takes place. 

Take AEA. For each i E I we have either p(A n T;) = p(1i) 
or p(A n T;) = 0 because of 21 is a quasiatom. Since I is at most 
countable set it follows 



p{A) = Up{An7j)UP(A \ U7i) = U p(An7i), 
iEI, iEI iEIA 

thus 

and (27) is true. 

Using Lemma 2 we derive AA(UeIA 1D E N(p) and hence 
A \ UE/A 71, UefA 71 \ A E N(p) according to (10). Consequently 
A E E and 'ther~fore A S;; E· ' 

Theorem 2 and 'Lemma 5 describe D'-quasiatomic SV -measure 
completely as the following Proposition 2 shows. Proposition 2 
builds D'-quasiatomic SV-measure with prescribed collection of qu­
asiatoms, with given values on them and with given u-ring of null­
sets. Only in this Proposition we leave the assumption that (O,A, 
H,p) denotes a ~pace with SV-measure. 

Proposition! 2.' Let ° ::F e, H be a set. Suppose that the 
folloWing entities ~re;'given: 

-.1 ... at most countable index set, 

- {7j, i E I}: .•. a collection of mutually disjoint nqnempty 
subsets of 0, 

-' {Hi, i E I} : .. a collection of mutually disjoint nonempty 
subset of H, 

- B S;; exp ° ... a ",-ring of subsets of O. 
Assume that conditions (23), (24) and (25) are fulfilled. Finally let 
A be d.efined by (26) and p: A - exp H by (27). 

Then (O,A,H,p) is a space ,with D'-quaslatomic SV-measure p. 
Moreover {7i, i E I} is a p-admissible collection, the u-field peA) is 
generated by {Hi liE I}, and N(P) = B. 
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Proof. Let us denote 

L: = {A ~ 0 I A \ UT; E B&'v'i E 1 
'eT (28) 

[T; \ A E B or T; n A E B] }. 

We prove that E is a u-field (part a), E = .A (part b), Il satisfies 
(4) (part d).1l satisfies (5) (part e) and N(Il) = B (part f). 

a) Let A E E. It holds (0 \ A) \ aeTT; = (0 \aEIT;) \ (A \ 
UiElTi ) E B, as follows from (24), (28) and the fact that B is a 
u-ring. Moreover, T; \ (0 \ A) = T; n A and T; n (0 \ A) = T; \ A is 
true for all i E I, so that 0.\ A E E by (28). 

Let An E E for all n EN. Hence UnENAn \ UiEIT; = UnEN(An \ 
UiEIT;) E B since B is a u-ring. It remains to prove that T; \ UnENAn 
E B or that T; n UnENAn E B. We distinguish two cases. 

i) Let Tt n An E B for all n E N. Hence T; n Une..vAn = 
. UnEN(An n Tt) E B since B is a u-ring. 

ii) Let there be an index no such that n \ Ano E B. It 
holds 

whenever NI is nonempty and NI U N2 = N. Taking NI = {n E 

NIT; \ An E B} and N2 = {n E N 11i n An E B} we find that 
n \ UneNAn E B. 

b) Let us prove that E = A. The O'-field E contains any 
A E B (cf. (24), (25) and (28)) as well as any T;, i E I. Thus 
E2 cr(BU {T; 1 i El}) = A. 

Conversely, let us take A E E. We have A \ aEITi E B ~ A. 
Moreover Tt n A E B S; A or T; \ A E B S; A, and always T; E A, i.e., 
nnA E A for all i El. Therefore A = (A \ aEIn)Uaer(T;nA) EA. 

c) We observe tha.t if A E E and i E I, then either Ta \ A E B, 
or n n A E B (if n \A E 8 and n n A E B, then T; E B, which 
contradicts to(23». 
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cl) Moreover Tt n A E B holds iff IJ(7} n A) :: 0 takes place; 
T; \ A E B holds iff Jl(Ti n 11) = Hi takes place. 

c2) Using these two facts we find that 

IJ(A) = U IJ(n n A) = U Hi 
iEI iEIII 

holds for a.ny A EA. 
d) Let A, BE A be disjoint. It suffices to prove that lA nIB = 0. 

Let i El. It holds T, = 7i \ (AnB) = (Tt \ A)U(T; \ B) 3nd 11 ~ B, 
i.e., at least one of Tt \ A anll Ti \ B does nat belong to S, so that at 
least one ofT;nA, TtnB lies in 5, i.e., i f/ IAnlB. Thus lA nIB = 0. 

e) Let An E A for all nE N. Then 

IJ ( U An) = U IJ (Tt n U An)' 
nEN iEI nEN 

and 

U Jl(An) = U U IJ{T; n An}, 
nEN ;EI nEN , - , 

as follows from c2. Thus it is enough to prove 

IJ (71 n U An) = U Jl(Tt n An) 
, nEN nEN 

(29) 

for each i E I. We "distinguish the same two cases as in part a. In 
the case i) both sides of (29) equal 0, as follows from cl. In the 
case ii) both sides of (29) equal Hi, as follows from cl. 

f) If A E B then lA = 0 by (25). Thus A E N(IJ) by (27). If 
A E N(IJ) then lA = 0 by (27), so that AnT; E B holds for all i E I. 
Therefore An (UeI1i) E 5 and A \ UE/7} E B since A EA = L' SO 
A EB. 

6. SV-measure ranging in at most countable target. 
SV-measures ranging in a countable target Jl and satisfying IJ(O) = 
Hare equiva.lent to the so-called nonstandard B-valued probabil­
ity measures introduced in Kramosil (1991), cf. 'Appendix A for 
details. 
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An aim of the cha.ptcr is to completely characterize SV-measu­
res ranging in at most countable target. 

REMARK 1. Let (X,X) be a measurable space with X at most 
counta.ble. Then X is a union of at most countable collection of 
a.toms of X) thus X is countably generated. 

Recall that n = (n,A, H, J.l) denotes a space with SV-measure. 

Lemma 9. Let H be at most countable. Then J.l is u-quasiat­
omIC. 

Proof. We have ,:ten) ~ H, thus J.l(n) is at most countable, i.e.: 
J.l(fl) is a union of at most cpuntable collection {Hi 1 i E I} of atoms 
of J.l(A) according to Remark 1 (in fact {Hi 1 i E I} = H(J.l». For 
any i E I there is Ti E A such that J.l(T;) = Hi. Of course, Ti, i E I 
are qUCl..CJiatoms of J.l and (22) takes place. 

COROLLARY 4. An SV-measure J.l is u-quasiatomic ift (n, A, 11, 
H(J1'» is a space with SV-measure ranging in at most countable 
target. 

Proof. a) Let f.1. be a u-quasiatomic SV-measure. There is a 
f.1.-admissible collection rn 1 i E I}. Thus H(f.1.) = {f.1.(Tt)·1 i E I}, as 
follows from Lemma 6, and hence H(f.1.) is at most countable set. 

b) Let the set H(f.1.) be at most countable. Then 'ji is a u­

quasi atomic SV-mcasure according to Lemma 9 and thus f.1. -is u­

quasiatomic . 
We derived a. complete description of u-quasiatomic SV-measu­

res in the preceding Chapter 5 (namely in Theorem 2 and Propo­
sition 2). It can be easily concretized to get a complete character­
izafion of SV-measures ranging in a countable target. Details are 
left to the reader. 

If we assume that the u-field A is countably generated then we 
obtain a special type of SV-measures. 

Lemma 10. Let H be at most countable set and A be count­
abiy generated u-field. Tilen there is at most countable collection 
{T; 1 i E I} atoms of A such that J.l(T;) f 0 holds for any i E I and 
f.1.(n) = UiElf.1.(Ti). Moreover N(J.l) is a u-field of subsets ofn \ UEIl1. 
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Proof. We have derived at Corollary 4 that there is a collection 
{11 liE /} of mutually disjoint atoms of A such that 

p(O) = U pen), 
iEI 

Hence 1 is at most countable since p(O) is at most countable set 
and p(To), i E 1 are mutually disjoint. Thus Il(n \ UE1To) = e and 
n \ UielT; is the maximal null·set in A. 

Thus if H is at most countable and A is countable genera.ted, 
then 0 has the following structure. There is the null-set B and at 
most countable collection {T; liE I} of atoms of A such that 

B and UielTo are disjoint and 1l(T;) :f 0 for all i E [. 

Appendix A. The concept of nonstandard B-valued proba­
bility measure (n. B-v.p.m.) is introduced in Kramosil (1991), 
Definition 2, and recalled below. 

We shall show that such a measure can be interpreted as SV­
measure ranging i» a countable target set. Namely, we represent 
any n. B-v.p.m. ~y some SV-measure. . 

Let us consider a. measurable space (0, A) and a nonempty set· 
H. The symbol {O,I}H denotes the set of all mappings from H 
into' {a, I}. Finally, .the symbol E:B denotes coordinatewise addition 
defined on {a, I}H. It means that if i E H and M ~ {a, I}H, then 

( $S) = ESi 
seM i SeM 

reaches values from {O,1,2, ... }U{+oo}. 
Infinite binary sequences are considered in Kramosil (1991), 

i.e., the special case with H = N = {I, 2, 3, .. } is, investigated. 

DEFINITION 9. A mapping P which takes A into {a, I}N is called 
a. nonstandard B-vo.lued probability measure 'if P(O) = (I, I, 1, ... ) 
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and if for each countable system Al ~ A of mutually disjoint. se.ts 
it holds 

p( U A) = E9 peA). 
AEAt AEAt 

We shall represent nonstandard B-valued probability measures 
by means of SV-measures. Roughly speaking, whenever a sequence 
S-e to, l}N is used we substitute it by a set S' e exp N satisfying 

{ieNI~=l}=S'. 

Let MH be the set of all mappings from A into exp H, M~l be 
the set of all mappings from A into {O, l}H. 

We introduce a mappi'ng 1/.': M~l --+ MH as follows. For every 
P e M~1 we set 

t/J(P)(A) = {i eH I P(A)i = I}, VAeA. (30) 

Then, as could be eaSily seen, tP is a bijection between M~·l 
and MH. Moreover, the following proposition holds. 

PROPOSITION 3. Let P e M~l. Then tP(P) is an SV-measure ift' 

(31) 

holds for -any system An eA, n e N of mutually disjoint sets. 
Proof. a) Let tP(P) be an SV-measure, denoted by p. We con­

sider mutually disjoint sets An eA, ne N and the set A = lJ:=lA". 
- Let 

M =p(A). 

Then 

00 

M = U peA,,) 
.. =1 
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and #J(An) , n E N are mutually disjoint, as follows from (4) in 
Definition 1. 

If i E H \ M, then peA), = 0 and P(A,.), = 0 hold for any n E N. 
So that 

00 

peA), = Ea P(An };. (32) 
1l=1 

If i ,E M, then there is .just one n(i) E N such that i E p(An (.», 
be~ause P(An), nE N are mutually disjoint. Therefore 1 ~ P(A). = 
P(An(i»' and P(An). = 0 for any n E N \ {n(i)}. Thus (32) holds 
for i E M as well. So that P satisfies (31). 

· ,b) Le~f f~~~,l.(~l)andp denote tb(P).We shall prove that 
peek == 0 holds for any'; E H. ,We set I:: A1 = .42 = A3 = ... 
into (31)~ Th~~ f(I). =E9::I p(e)i, so that p(e)i = o. 
, Let A, B:'(:' A be mutually disjoint. We set Al = A, A2 = B 
and 0 = A3 = At = ... into (31). Then peA U B) = peA) €eP(B). 
Let i EH. If i ~ peA), th~n P(A). = 1, so that P{B)j = 0, therefore 
i;' p(B). Thus ~(A) np(B) ~. and (4) is satisfied. 

· ' If An eo4. n, E~N'.are mutually disjoint, then (5) follows from 
(4) and (31). .:.'", c; " ' 

It resul~s fron:. Proposition 3 and Definition 1 that if P is an 
•• _ . r ',," .,.; ,',.' , ,; 

n. B~v.p.m., the. tb(P) is an SV-measure. Conversely if p is an 
SV-measure andj..(O) = N, then tb-I(p) is an n. B-v.p.m. 

· "Appendix a. Compositions of a nonstandard B-valued prob­
ability measure with probability measures (called induced proba­
bility ,rIleasures with'respect to given n. B~v.p.m.) are st~died in 
Kramosil (1991). There is an open question in Kramosil (1991) 
~hether such a measure is discrete or not. We shall give art affir­
mative answer here. 

To do that it suffices to prove that the composition of SV­
measure p ranging in a coun:table target set with a measure is a 
discrete measure. 

REMARK. We call a probability measure v defined on a measur­
able space (X, X) discrete ifi' th~re is an ,at most countable collection 
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{Ai liE I} of measurable sets such that for any A E X it holds 

v(A) = Ev(AnAi ). 

iEi 

Lemma 11. Let (n,A,H,p) be a space with SV-measure, p 
be a measure on (p(n), p(A}}. Then pop is a measure on (n,A). 

Proof. Let An E A, n E N be mutually disjoint sets. Then 
P(Lr=l An} = U::l p(An) and p(An), n E N are mutually disjoint 
sets again. Therefore 

Let the target H be countable. Then pen) is the union of 
at most countable collection of atoms of p(A), because p is (1-

quasiatomic by Lemma 9. Of course, any measure p on (p(n), p(A» 
must be discrete. Therefore the composed measure fJ 0 p is discrete 
as well. 
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