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Abstract. The unique solvability and asymptotic behavior for large time of two cases of symmetric
bisexual population model are presented. One of them includes the harmonic mean mating law,
while in the other one pair formation occurs only within the same age class.
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1. Introduction

Pair formation models are of great importance for human demography and epidemiology,
in particular for modeling sexually transmitted diseases (see, €.g., references in Hadeler
(1993)).

It is well known the standard ordinary differential equations model for pair formation
(see, e.g., Hadeler (1993), Priiss and Schappacher (1994) and references there). This type
of bisexual population models consists of a system of three differential equations for
Sm, Sf, Sp, the total number of single males, single females, and pairs, respectively, and
reads

S,I,n = —lUmSm + (5771 + by + O')p — ©(Sm, Sf)’
P’ = =(fim + fiy + 0)p + @(Sm., Sg).

Here the prime indicates differentiation with respect to time ¢, u; > 0 (fi; > 0) denotes
the death rates of unmarried (married) males (; = m) or females (j = f), 3; > 0
the birth rates, ¢ > 0 the divorce rate, and ¢ the mating function. The model (1.1) was
completely analyzed by Hadeler et al. (1988).

Ordinary differential equations model totally neglects the age structure of the popu-
lation. Hadeler (1993) incorporated a maturation period 7 by introducing a delay in the
standard model and derived the system

S;n = fm exp{—-umT}p(t - T) — U Sm + (ﬁf + O')p - (P(Sma Sf)’
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St = Brexp{—ps7}p(t — 7) = ps Sy + (fim + )P — ¢(Sm, S¢), (1.2)
P = —(fim + iy + 0)p + @(Sm, S¢),

for which in the case where fim, = fim, fif = py he studied the persistent solutions.

There exist also few works devoted to pair formation models of sex-age-structured
populations (see, e.g., Hadeler (1993), Priiss and Schappacher (1994) and references
there). The most general sex-age-structured populations model have been proposed by
Hoppensteadt (1975) and Staroverov (1977), and consists of a system of three itegro-
differential equations for the density z(, a) of single females of age a, the density y(%, b)
of single males of age b, and the density p(t, a. b, ¢) of pairs which are formed of females
of age a, males of age b, and which have existed for a time ¢. Hadeler (1993) simplified
this model by introducing a maturation period into the mating law. This simplified model
reads

Ox+0,x+uz=0, 0O<a<r,
Oy + Oy +pyy=0, 0<b<,

oo a—T o0
AT + oz + pipx + /p|c=o db = / de [ (fy+0o)pdb, a>rT, (1.3)
T 0 T+c¢
o] b—T1 o]
Oy + Opy + pyy + /p|c=o da = / dc / (ig +0)pda, b>T,
T 0 T+e¢

3tp+aap+abp+acp+(ﬁz+ﬁy+a)=07
a>7,b>71,0<c< min(a—-T7,b—17),

o0 o0 o0
tlomo = [de [da [ Bupdb, [alomr) = Wlor] =,
0 T+cC T+c¢

oo oo 0o
y|b=o=/dc/da/ﬂypdb,

0 T+c T+cC
p|0=0 = (,5(1', y)(tv a, b)’ a>rT, b> T,

zlt=0 = 2%, yYlt=0 = 1°, pli=o = p°.

Here 7 > 0 is a maturation period, &, 8,, 8, and &, indicate partial differentiation,
[z]a=+] and [y|o=-] are jumps of = and y at the lines a = 7 and b = 7, respectively,
2%, y°, p° denote the initial age distribution of single females, single males, and pairs,
respectively, 3; the birth rates of males (j = y) or females (j = ), uy resp. i, the death
rates of single males resp. single females, o means the divorce rate of pairs, fi, resp. fiy
the death rates of married males resp. females, and 5 the mating function. The harmonic
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mean mating law

[o o]

Bz, y) = mmy(]ohwxda + /hyy db)~1 (1.4)

T

generally is used. The non-negative demographic functions . (t, a), py(t,b), m(t,a,b),
hz(t,a,b), hy(t,a,b), fiz(t,a,b,c), fy(t, a,b,c), o(t,a,b,c), B(t,a,b,c), By(t, a,b,
¢), initial distributions z°(a), y°(b), p®(a, b, c) and maturation age 7 are assumed to be
prescribed. In addition we assume that z°, y° and p° satisfy the following compatibility
conditions

x°(0)=/dc/da/ﬁ,,|t=gp°db, y(0 /dc/da/ﬁyh —o0 p° db,
0

T+c  T4c +c¢  T+c

-1
P°le=0 = m|t=02%° /Mhmumﬁ/wwwdﬂ )

[z°(r)] = [y°(r)] = 0. (1.5)

In the case where py, py, fiz, fly, 0, Bz, By and m are constants and h, = h, =1
Hadeler (1993) integrating the system (1.3), (1.4) over age derived (1.2) and stud-
ied its persistent solutions. Priiss and Schappacher (1994) treated more general case
pz(a), py(d), fiz(a), fy(b), o(a,b,c), 7 =0, Bz(a,b,c), By(a,b,c), hy = hy =1and
obtained the conditions for existence and non-existence of persistent solutions of (1.3) in
an L!-setting.

In the case where population is symmetric in the sence that all vital rates are symmet-
ric in a and b and independent of sex, i.e., Bz = By = B, pa = ly = b, fliz = fly =
i, hg + hy = 1, the model (1.3)~(1.5) can be simplified and reads

Or+0x+ur=0, 0<a<r,

o

6¢x+8am+;m:+/p|c_odb— /dc/ (i+0o)pdb, a> T,

T T+c
8p + 0up + Osp + Bep + (23 + 0)p =0,
a>71,b>1, 0<c< min(a~-7,b-7), (1.6)

mIa_o—/dc/da/ﬁpdb [Zla=r] =0, -

T+c T+c
]

Dle=0 = mz(t, a)z(t, b)(/x(t,f) df) _1, a>1, b>T,

T

xlt:O = -'L'Oa plt:O = poa
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2°(0) = [de [ da | Bli=op®db, [z°(r)] =0,
[«]“]

2%)e=0 = m|t=om°(a)m°(b)</x°(£) dﬁ)—l, a>T1, b>T

T

The model (1.6) can be considerably simplified replacing the harmonic mean mating
function by a law in which pair formation occurs only within the same age class:

Ox+8,x+pux=0, 0<a<r,
a—7
Oz + Oz + (L +m)z = / (& +o)pde, a>T,
0
Op+0,p+0:p+(2a+0o)p=0, a>7,0<c<La-r, (1.7)
o0 o0 .
x|a=0 = /dC /dea‘a [x[a='r] = O’ pIC=0 =mz, a>T,
0 T+c

xlt:O = xO, plt=0 = pO’

£°(0) => de | Bls=op®da, [z°(7)] =0,
! T!C o : ‘
Polc‘=0 =m|i=0z’, [2°(7)] = 0.‘

Here z(t,a), p(t,a,c), B(t,a,c), it a,c), m(t,a), u(t,a), z°(a), p°(a,c) depend
on indicated variables only. In the case where fi = u(a), m(a), o(a), f(a) and 7 = 0
Hadeler (1989) analyzed the persistent solutions for this linear model.

In this paper we deal with (1.6) and obtain its solution in the case where i = pu, m
and ¢ are constant and § depends on all possible variables, and construct its asymptotic
behavior when (3 is constant and z°, p° are majorized by the initial value of the per-
sistent solution for (1.6) (see Section 5). We treat also problem (1.7) with u(t,a) =
i(t,a), o(t,a), m(t,a), B(t,a) and obtain its solution. Moreover, we construct its
asymptotic behavior when all vital rates are stationary and initial distributions are special-
ized (see Section 3). We also deal with the modified problem (1.7) with operators 8; + 9,,
O + 0, + O, replaced by respective directional derivatives and prove its solvability when
4, fi, o, m are stationary, § depends on all possible variables and initial functions belong
to special class. Moreover, for stationary 5 we construct the asymptotic behavior of this
modified problem (see Section 4).

In Section 2 we analyze persistent solutions of (1.7). In all considered cases we found
that product (persistent) solutions furnish the asymptotic behavior of general solution for
large time (¢ > a). This result is analogues to that for the Lotka-Sharpe problem (see
Busenberg and Iannelli (1985)).
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2. Persistent Solutions of (1.7)
In this section we look for the functions

z = exp{A(t — a)}X(a), p=exp{\(t—a)}P(a,c), Q@)
1% = X(a)exp{-Aa}, p°= P(a,c)exp{—Aa},

as the solution of (1.7) in the stationary case of u, i, o, m, S.
Substituting (2.1) into (1.7) yields

X' +pX =0, a<r, 2.2)

a—T

X' +(pu+m)X = /(/'Z-i—a)Pdc, a>T, (2.3)
0

0,P+0.P+(2h+0)P=0, a>1,0<c<a—r, 2.4)

X(0) = /exp{—)\a} da / BPdec, P(a,0)=mX, i[X(T)] =0, 2.5)
0

T

here the prime indicates differentiation with respect to age a. Egs. (2.2) and (2.4), (2.5),
have the formal solution ‘

X=X(0)exp{—/uds}, a<T, - (2.6)

0
a

P=m(a—-c)X(a—-c)exp { - [ @i+ 0)l(nn-ate) dn}, a—czT1. (27
a—c¢

Denoting
a—T
F(a) = / Pde, (2.8) .
0

and using (2.4) and (2.5), yields

Fl—mX =- / (24 +0)Pde, F(r)=0. ’ | 2.9
0

Then combining (2.9), (2.3) ﬁnd (2.6) one can obtain

a—T

(X+F)'+uX:—-/,ELPdc, '

0
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T

(X+F)|a=r=X(T)=X(0)exp{-—/uds}. (2.10)
0

In the case where ji, o and 3 are independent of ¢ and i = u Eq. 2.10 has the solution

a

X + F = Gla) =X(0)exp{ —/uds}, (2.11)
0

which allows us to get the following equations
X' +@2u+o+m)X =(u+0)G, X(r)=G(r),
F'+@2u+oc+m)F=mG, F(r)=0,

having the solutions

a

X = X(O)Nx(a)exp { - / pds} = Nx(a)G(a), 2.12)
0

F = X(0)Nr(a) exp{ - /,uds} = Nr(a)G(a), (2.13)
0

a

Nxzexp{—/(u+a+m)ds}

T
a

+/(#+0)exp{—/a(u+0+m)d3}dn,

Np(a) = ]m(n)exp{ - /a(u+a +m) ds}dn.
T 7

Substituting (2.13) into (2.5), yields the following equation for A
o0 a
s(B)(N) =1, &(B)(\) = /ﬁNF exp{ —ah— /,,Lds}da, 2.14)
T 0

while X (0) > 0 is arbitrary.
Ifm, o, u and_ﬁ are continuous and 3 is bounded, then Nx < 1, Np < land &
exists for ReA > A = — ir>1f(1/a) foauds, A < 0. Assume lim  &(8)(A\) > 1. Let
a>r A—340

X > Abea unique real root of (2.14) and A\, = ar £ ifB, ar > 5\, k=1,2,...its
complex roots. Then o, < Ag for all k, sign)e = sign(x(8)(0) — 1), and Ay = 0 if
K(B8)(0) = 1.
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Eq.2.14, for 7 = 0, has been analyzed by Hadeler (1989). The qualitative dependence
Ao on 3, u, o, m for (2.14) is the same as that presented in Hadeler (1989) for = 0.
Clearly )¢ is decreased as 7 increased because d)o /dT < 0.

Now we consider the case ji(a,c), o(a,c) and B(a,c). Denoting Dy = {a : a >
T, uéirclf[l}, Dy={a:a>m u>ircxfﬁ},

u in Dla
M (a) = IIclfp, in Dg,
pu for a<,
from (2.10) one can obtain the estimate

a

X + F < Gu(a) =X(0)exp{ —/u,ds}, 2.15)
0

since py < 4, fi.
Substituting (2.7) into (2.3) yields the problem

a

X 4 (u+ m)X" = / X*(m)L(ayn) dn,
T

a

L(a1) = (5 + o)wa-nmexp { = [@6+0)lie-n de,
n

X*(r) = exp { - / pds}, X*(a) = X(a)/X(0),

0

which can be rewritten as follows

X* = X*(T)exé{—/a(p+m)ds}

a a

o .
+/dpexp{ - /(u+m) ds}/X*(n)L(p, n) dn. (2.16)

T P

If m, p, [i and o are continuous then this Volterra type equation has a unique non-
negative continuously differentiable local solution, which due to (2.7), (2.8) and (2.15) is
global and has the estimate X *(a) < exp { - f: Lo ds}. Combining (2.5), and (2.7) we
get the following equation for A

KON =1 s = [daexp{-ar}
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a

/,3 a,a —§m(§)X*(§ )exp{ - /(éﬂ+a)l(n,n—€) d’n}dﬁ, (2.17)
: .

while X (0) > 0is élrbitréry. Ifm, 8, i, o are continuous and 3, m are bounded, then k1
a
exits for ReA > A\, = —ir>1f(1/a)/ s dS, Ax < 0.If Ao > As and o £k, ok > As
azT

are unique real and complex roots o(% (2.17), then ax < Ao, signig = sign(k1(6)(0) —
1). Clearly )Xo is increased if in some age class 3 increased. Observe that if i, o and
are independent of ¢ and i = g, then k1 (8)(A) = k(8)(\) and X = A,.

As aresult we have proved

Theorem 2.1. Assume:
(1) w, @i, o, m and (B are non-negative non-trivial functions, and 3, m are bounded,
(2) p € C°([0,00)), m € C*(0,00)) N C°([0,0)), B € C°([r,00) % [0,a — 7)),
i, 0 € C%Y([r,00) x (0,a — 7)) N C([r,00) x [0,a — 7]),
(3) lima—a, 40 £1(B)(A) > 1, Ay < 0 forreal A
Then (1.7) has a unique non-negative normed solution of type (2:1) such that X < G..

Notice that (2.6), (2.7) and (2.12) (or the solution of (2.16) in the case ji(a, ¢), o(a,c),
B(a, ¢)) represent the stationary solution of (1.7) provided that x(0) = 1 (or x1(0) = 1).

3. Model (1.7) in the Case j = u(t,a), o(t,a), 8(t,a)

In this section we consider problem (1.7) with 3, i, o not depending on ¢ and iz = g,
construct its solution, and obtain its asymptotic behavior for large time (¢ > a) and
stationary u, o, m, S.

Integrating (1.7); and (1.7)3 yields

(2 -texp{~ [ ue-a+1d}, <i<a,
z = o 3.1)
m(t—a,O)exp{—-f,u(ﬁ—a-{-t,ﬁ)d&}, -0 < a < min(t,7),

0

’

a
p(a—tc—texp{ f (2u + 0)|e— a+t£)d£},

p= Osigega-n’ (3.2)
(mx)l(t;c,a—c) eXp{ - f (2/1 + O‘ 5 a+t,€) dg}
L 0 < ¢ < min(t,a—7).
Denoting
a=—T a—T
ft,a) = /pdc, Oa) = /p de, a2t (3.3)
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and using (1.7) we obtain

hx+ 8z +(u+m)r—(u+0)f =0, (3.4)
I!t:O = xO’ xla:r = x(taT))
Of+0f-mz+(2u+o)f=0, (3.5)

f|t=0 = fov .flll=7' =0,

where z(t, 7) is defined by (3.1). In the stationary case of all vital rates Hadeler (1989)
studied the exponential solutions for this system. Adding (3.4) and (3.5) we obtain

Oz + f) + Oa(z + f) + u(z + f) =0,
(+ fle=0 = z° + fo’ (x+ fla=r = z(t,7)

and consequently

$+f =g(t1a)’ (36)
(a1 + fola-t)exp{ - [ pe-a+t,0)de}, t<a-r,
a—i

g={ a-tep{~ [ ue-a+tt,)d}, a-r<i<a,
a-t

a
z(t — a,O)exp{ - [u(€ —a+t,§)d§}, t>a.
0
Eq. 3.6 allows us to separate (3.4), (3.5) into two following problems

AT +0,x+(2u+o+m)z=(u+0)g, =l=o=2° z|o=r = 2(t,T),
Oif +8af +(2u+o+m)f =mg, flizo=1/" fla=r=0, (3.7

having the formal solutions

z=1x1(t,a) = exp{ - /au(é—a+t,f)d£}{m°(a—t)

a
a

xexp{ = [ (u+ o+ mle-oreode]

a—t
a a
+ / exp{ - /(u +0+m)(e-att) df}
a—t n

X (1 + 0)|(n-a+t,ny dn(2°(a — t) + fO(a ~ 1)) } a-tz1, (38
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a

o=m(t,0) = e e { - [ue-a+td]

a—t
a
X{GXP{ - /(H+U + m)|(g—att,6) df}
J ‘
+ [ew{= [t mle-amed]
s ) ‘ ‘
(g + )| (n-a+t,n) dn}, 0<a—-t<T, (3.9)
z = z3(t,a) = z(t — a,0)Ny(t,a), t>a, (3.10)

a

f=nita)=e{- [ u-a+ro)

a—t

X{fo(a—t) exp{ ~ [ (u+0+mle-ariodt}

a—t
+ [ exp{ — [ (b+0+m)|(g-atte) d€
L=t }
xm(n—a+t,n)dn(m°(a—t)+f°(a—t))}, a—-t=T, 3.11)

a

f= o) =aa—ew { - [ ue-atrreya)

a a

x [exp{ = [(uto+mle-asse dehmin - o+ timan
/ |

T

0<a—t< T (3.12)

f=fa(t,a) = z(t - a d)Nf(t,a), t >‘a, (3.13)
Nx(taa') = exp{ - /u(éea+t,£)d£}

0
a

x{exp{ - /(M+U+m)|(5—a+t’€) df}

T
a a

+/6XP{ —/(/J + 0 +m)|(e-atte) df}(#+<7)|(n-a+t,n) dﬂ}7

T n
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a

Ny (t,a) =‘exp{ - /#(E —a+t,§) d€}

0
x [exp{~ [(u+o+mle-areedemin—ate,man
T n

Now we claim to justify these solutions. Eq. 3.6 and definition of N and N show that

xy, f11 z2, f2 < g, and ny N:c < exp{_fﬂ(§+t - a’?&) df}, (314)
0

provided that u, o, m are continuous.
For z(t, 0) we have the condition z(t,0) = [° 8f da, i.e.,

t+7 oo
2(t,0) = / Bfzda+ / Bfida, O<t<r, (3.15)
T t+T
T t+7 00
2(t,0) = [ (BN7)l(u—pz(p,0) dp + / Bfrda + / By da,
0 t t+r1
t2T. . (3.16)

Starting with (3.15) and going along axis t by step 7 from (3.16) we can construct z(t, 0)
for all £ > 7. Knowing z(t,0) and using (3.8-3.10) and (3.2) allows us to construct
z(t, a) and p(t, a, c) for all ¢. Thus we have

Theorem 3.1. Assume:
(1) 2% p°, u, o, m and B are non-negative non-trivial functions,
(2) m € C*((0,00) x [1,00)) N C°([0, 00) x [, 0)),
s € C19((0,0) x [0,00)) N CV([0, 00) x 0, 00)),
B, o € CH0((0,00) x [1,00)) N CO([0, 00) x [7,00)) and m, B are bounded,
3) 20 € C1((0,00)) N CO([0, 00)) N L1(0, o0),
p° € CY{((r,00) x (0,a — 7)) NCO([r, 00) x [0, a — 7]) N LY((7, 00) X (0,a — 7)),
@) [ 0,(B(t,a)f1(t,a)) da converges uniformly for 0 < t < oo.

t4r
Then (1.7) has a unique non-negative solution x, p such that x € C°([0,00) x

[0,00)) N CY{(((0,00) x (0,00))\ {(t,a) : t = a,t =a-T,a = 7}),p €
C([0,00) x [0,00) x [}O),a — 7)) N C{((0,00) x (1,00) % (0,a — 7)) \ {(¢,a,¢) :
t=a,t=a—1,1t=cy})

Proof. Conditions (2) and (3) and estimates (3.14), ensure the existence of f:: , Bf1da.
The rest is obvious.
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Our further purpose of this section is to construct the asymptotic behavior of z, f and
p for stationary u, m, o, 5. We limit our attention to the case

2%(a) < X(a, o) = X(a) exp{—alo},
po(a,‘c) < Pla, e, \o) = P(a,c) exp{—alo}, 3.17

where X and P are defined by (2.6), (2.12) and (2.7), respectively, and Ao is a unique
real root of (2.14). Of course, we assume that conditions of Theorem 1 for i = u and
Theorem 3.1 for the stationary case of u, o, m, (3 hold true.

- We first prove that functions z, f and p defined by (3.1), (3.8)-(3.13) and (3.2) are
bounded by X (a, o) exp{tXo}, F(a,o)exp{tio} and P(a,c, Xo) exp{tio}, respec-
tively, where F(a, \o) = F(a)exp{—aXo}. Egs. (3.11), (3.12), (2.11), (2.6) and esti-
mates (3.17) show that

fi <exp{— ]ud&}{ﬁ'(a—t,/\o)exp{— /a(,u+cr+m)d£}

a—t a—t

+G(a—t)/exp{—/(u+a+m)d§}m(n)dn}

a—t n
a

= G(a)exp{—to(a — t)}{NF(a —t) exp { - / (4 + 0 +m) d§}

+/‘1exp{—/a(.#+o+m).df}d’7‘}

= G(a)Nr(a) exp{—Xo(a — t)} = F(a, \o) exp{tAo},

f <exp{—/udé}/aexp{—/a(u+o+m>d5}m(n)an(a—t)

x exp{—Xo(a —t)} = Nr(a)G(a) exp{—Do(a — 1)}
= F(a, o) exp{tAo},

which together with (3.15), (2.13) and (2.14) yield
z(t,0) < exp{tio} /,BF(a) exp{—aXo}da = X (0)exp{tro}, t<T.

_ Now from (3.13) we obtain f; < X(o)_exp{xp(t —a) - [° udﬁ}NF(a) -

F(a, Ao) exp{tAo}, and then, from (3.16), z(¢,0) < X (0) exp{tio} fort >7.
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Similarly from (3.8)—(3.10), (3.1) and (3.2) we derive estimates
z < X(a, o) exp{tho}, p< ]5(a, ¢, Ao) exp{tho} forall t>0.

Hence there exist Laplace and its inverse transforms of z, f and p. Let Z(, a) and f( A a)
be the Laplace transforms of z and f. Then from (1.7),, (3.13) we find

Z(}, 0) =/ﬁfda, Ffva) = /flexp{—t)\}dt+ / fgexp{—t)\}dt
T 0

a-T

oo
+ / faexp{—tA}dt,
a

a

/ faexp{—tA} dt = B(\, 0)Np(a) exp{—a — / uds}.

0

Hence
2(A\,0) = SN - &(B)(N)7,
S\ =28 frexp{—tA}dt+ | faoexp{—tA}dt}da,
/] / }

where k(8)(]) is defined by (2.14).
Letting Re\ = o and using estimate f, < F(a, Ao) exp{tXo}, s = 1,2 we obtain

a

ISO)] < / da BF(a, Xo) / exp{(ho — a)t} dt

0
a a

= X(0) 7daﬂNp(a) exp{ —aXo — /,uds} /exp{()\o — o)t} dt.

0 0

a
If 8 is bounded and @, Ao > A = —ix>1f (l/a)/ wds, A < 0, then |S(\)| is bounded

0
too. Let (2.14) has a unique real root Ap and assume that real part o, of its complex roots
verify )\ < o for all 5. Then g < Ao, and using the method of contour integral [1] for
inverse Laplace transform yields

z(t,0) ~ gexp{tho}, ¢ =S(Xo)/(~&"(N)),



222 V. Skakauskas

the prime indicates differentiation. At last from (3.1), (3.10), (3.13) and (3.2) one can
obtain

0<a<gT,

Q:quxp{ko(t—q)“/“ds}{}vx( ), a=T,

0
a

f ~ gNr(a)exp {)\o(t—-a) - /uds}, (3.18)
0
p~m(a—c)gNx(a — c)exp {Aott -a)— /uds - /(u+a) ds}
0 a—c

for large time (¢ > a). As we saw Nx and Np < 1. Clearly the main term of z, f and p
for large time (¢ > a) is the persistent solution with X (0) = q.

1

4. Problem (1.7) in the Case i(a, c), o(a,c)

In this section we replace terms 8,z + 8,z and 8;p + 8up + dep of (1.7) by V28, x
and /3 311,p, where [; and [, are positive directions of the characteristics of operators
O; + 8, and 8; + 8, + O, respectively. This new problem we will call the modified (1.7)
problem. Our purpose is to prove the unique solvability of the modified (1.'}) problem in
the stationary case of u, fi, o, m and general function 3, and to construct the asymptotic
behavior of its solution for stationary 3. From (1.7) we have the formal expression

;

a‘o(a—texp{ fu } OStgdg'r,
z =4 “ (4.1)
x(t—aO exp{ J u() } 0 € a < min(t,7),
0
( a
p’(a-t, c—t)exp{ f (20 + 0)lgg-ato dﬁ}
L£t<€ceL
p=: Ostsesa- . “2)
m(a——c)x(t-—c,a—c)exp{— J 20+ 0)|¢,e~ate) df},
a—c
L ¢ < min(t,a— 7).
Denoting

o(t,a) = / (i+o)pde, a=T (4.3)
2 ‘
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and taking into account (4.2) and (1.7), we have

e1(t,a) + ftx(t —¢,a—c)Li(a,c)de,
e(z)(t,a) = 0 <0t La-r1, (4.4)

a—-T

| zt—-ca—-c)Li(a,c)de, t>a-T,
0

a
Ly = (i 4 0)|(a,cym(a — c) exp { - / (2 + 0)|(e,e—a+c) df},
p1(t,a) = / (& + 0)(a,0p°(a—t,c—1)

t
a

X exp { - /(2ﬁ + 0)|(¢,e—ate) d{} de, t>a~-r,

a—t
m=m1(t,a)=x°(a—t)exp{— /a(u+m)d§}
: a—t

+/exp{—/(p+m)d§}

x?p—(;)(p—a:t,p)dp, 0<tga—r, 4.5)
=za(t,0) =a°(a —t)exp{ - [ pdf— [ mde
z = z2(t,a) =z°(a exp{a—/tu T/m}

+/exp{—/(u+m)ds}

xc;(:c)(p—a:-t,p)dp, a—-T<t<a. 4.6)

Substituting

z = z3(t,a) = z(t — a,0)r(a), p=z(t-a,0)Q(a,c),
p= x(t - a, O)Tﬁ(Q)(a), tza

into (4.1)~(4.3) and (1.7), yields

,U.+0' I(a C)Q a, c)dc,

°\|
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a

Q =m(a - c)r(a — c) exp { - / (2 + 9)l(g.e-ate) df},

a—c
T

# 4 (urm)r = (@), 1) =exp{ - [ e},
0
Equation for r is the same as the differential form of (2.16) and therefore r = X*.
Let us denote

t—p
I(t, p,m) = exp { - /(2/1 + o) (g+n.6) dE}ﬂ(t,t —p+n,t—pym(n).
0

Then z(t,0) = [ dc 77 Bpda=1I+ Iy,

L = /dc / B(t,a,c)p’(a —t,c —t)
t T+c
a
xexp{ = [ (2+0)lce-are €} day
a—t
¢ oo
I = / de / B(t,a,cym(a -~ )zt — c,a — ¢)
0 T4cC

a t o0
x eXP{ - /(2ﬂ +0)l(e.e-ato d&} da = /dp/w(p, mi(¢, p,n) dn.
a—c 0 T
Ift < 7, then

t p+T

Iz=0/dp{ / z2(p, m)l(t, p,m) dn +pl ml(p,n)l(t,p,n)dn},‘

and
t ptT

x(t,0)=11+/dp{ /xz(p,n)l(t,p,n)dwr /xl(p,n)l(t,p,n)dn}- (4.7)
0 T o+T

If ¢t > 1, then

T

o0 t o0
I = /dp/m(p,n)l(t,p,n) dn+/dp/$(p,n)l(t,p,n) dn

0
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[e <] t

= /po/x(p,n)l(t,p, n) dn+/dp{/p$3(0, mi(t, p,n)dn

p+T 00
+ / z2(p, MI(t, p,n)dn + / xl(p,n)l(t,p,n)dn}
P p+T

p
dp/r(p -n,00X*(n)l(t, p,n)dn + I3,
T

Oy Y~

p+T oo
f= [do{ [ watomiteomn+ [ zilonice,pman
T p+T
t p+T (o]
+ / dp{ / z2(p, MI(t, p,n)dn + / wl(p,n)l(t,p,n)dn},
T P pt+n
and finally

t—r t
z(t,0) = /d&w(E,O)/X*(p—f)l(t,p,p—ﬁ)dpul+Is, t>7.  (48)
0

§+r

Starting with (4.7) and going along axis ¢ by step T we can construct z(t,0) forall £ > 7
provided that x; and z» are known and all integrals exist.

It remains to prove the solvability of (4.5) and (4.6). We restrict ourselves to the
case B(t,a,c) < B*(a,c), 2° < X(a, o), p° < P(a,c, \o), where 8*(a,c) is a
suitable function, X, P are defined by (3.17), and ) is a unique real root of equa-
tion k1(8*)(A) = 1 (see (2.17)). Denoting the right-hand side of (4.5) and (4.6) by
K(z), s = 1,2, respectively, we first will prove that K,(z) < X(a, o) exp{tho}, =
being the same.

Using (2.16) and (2.6), (2.7) from (4.2), (4.4)—(4.6) we obtain the following estimates:

a

p< Pla-te—tdoen{ - [(@+0)lee-oro &)
a-t
a-t

= m(a-9X(a-cexp{ = [ (2i+0)lnn-are) dn = dola 1)

a—cC

- / (24 + U)I(E,E—a+c) df}
a—t
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a

= m(a - 9X (- Jexp{ - [ @B+0)nn-orerdn ~dofa =)}

a—c

= exp{Mot}P(a,c, M), 0<t<e,
p < ma—)X(a~ c)exp{ho(t — )} exp { ~ Ao(a =)
a

- [ @ -are dn) = Dot} Pla,cdo), t>c,

a—c

(t,a) < exp{Ao(t — a)}¥(P)(a) dc,

Ki(z) < Xa=t e { = [ (u+m)ds}
+ [em{= [(u+m)dshexpiolt - )}w(P)o)do

a—t

a—t

= exp{—Xo(a — t)}{X(T) exp{ - /(/.L + m)ds}

r

/ exp /_ (4 +m) ds w(P)(n) dn} exp /a(,u + m)ds}
+/exp

a—

M+md8+>\o(t &) }9(P)(p) dp

o

n\

o= exp{)\o(t a)}

—

X(r exp{ //,L+m)ds

(M+m)d3}¢(P)(n)dn

:\

/—exp
/ / (u+ m)ds}w(P)(p‘)dp} = exp{ Mot} X (a, Xo),
Ky £ X(a - t)\o)exp /p,ds /mds

+/exp{ /(u + m)ds}exp{/\o (t — a)}p(P)(n) dn

T n
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exp{do(t — a)}{X(O) exp{ - /ap,ds - jmds}
‘ 0 T

+/aexp{ - /a(,u+m)ds}1p(P)(n) dn} = exp{Aot} X (a, \o).
T 7
Similarly,
(t,0) = [d Bpd g, { Mot} ood a_rﬁ*ﬁd
z ! aO/ pde < exp{Ao / ao/ c

exp{ Aot} X(0), t>0,
z3 < exp{ Mot} X(a,0), t>a.

Let z = 2(t,a)exp{Ao(t — a)}, 2 £ X(a) and assume 2’ < X(a), 2" < X(a).
Then from (4.4)-(4.6) it follows that

a
[p(e") = ¢l <l 2" = ' || [ La(asa = n)dnexp{da(t - @),
T
|Ks(z") — Ko(z')| || 2" = 2’ || eexp{o(t — a)},

€ = sup /adpexp{ - /(u+m)ds} /(ﬁ+ U)l(p,p—n)"i(’?)

a2t
p

p

X exp { - /(2ﬁ +0)leg-n } dn.

n

Therefore if € < 1, then operator K s defined by equation
z = Ky(2) = exp{—=Xo(t — a)} Ks(exp{Do(t — a)}2), s=1,2

is contractive, and Egs. (4.5), (4.6) have a unique solution. Here || z”/ — 2’ || is the norm
'in space C°. Observe that € < m(u + o)(u + m)~*(2u + o)~ < 1 for the constant
o=pu, o,m.

Thus we have proved

Theorem 4.1. Assume:
(1) B(t,a,c) < B*(a,c), B € C°([0,00) x [r,00) x [0,a — 7]) and p, f, o, B*, m
satisfies the conditions of Theorem 2.1,
(2) z° € C([0,0)), p° € CO([r,00) x [0,a — T)) are such that
1° < X(a)exp{—Xoa}, p° < P(a,c) exp{—Xoa}, where X and P are defined
in Sec. 2 and )\ is a real root of Eq. £1(8*)(A) =1,



228 ‘ V. Skakauskas

(3) e<1.

Then the modified problem (1.7) has a unique non-negative solution such that: x &
C%([0,00) x [0,0)), p € C°([0, 00) X [1,00) X [0,a—7]), 8. € C°((0, 00) x ((0, T)U
(1,00))), 81,p € C°((0,00) x (1,00) x (0,a — 7)) and z < X (a) exp{Ao(t —a)}, p <
P(a,c) exp{Xo(t — a)} forallt,a,c.

At last in the case of stationary 5(a, ¢) we will construct the asymptotic behavior of
z, p obtained above. The upper estimates of = and p ensure the existence of Laplace and
its inverse transforms. Thus from (1.7) 4, (4.2) we have

oo

de / Bo(A, a,c)da,

T+c

(A, 0) =

\8

0
P\ a,c) = /exp{——)\t’}m(a = ¢)z(t — ¢c,a — ¢)

X exp { - /_(2,& +0)|(¢,e~a+ec) dﬁ}dt

a—c
c

a
+ /p°(a —tc—t)exp { — At~ /(Zﬁ +0)|(e.—arte) dg}dt
0 a—t

a
= m(a — ¢)Z(\, a — c) exp { - e - / (20 + 0)|(¢,e-a+e) d{}

c

a
+/p°(a—t,c—t)exp{ — At - /(2ﬁ+a)|(5,5_a+c) dg}dt,
0 .

a-t

a—T a oo

Z(\a) = /xlexp{—)\t}dt+ / mzexp{—/\t}dt+/:cgexp{——/\t}dt
0

a—T a

a-—1 ; a

= X*(a)exp{—Aa}Z(},0) + / z1 exp{—At}dt + / zg exp{—\t}dt.
J ‘

a—T

Therefore

P\ a,c) = T(A,0)m(a - c)X*(a—¢)

a

X exp { —Ae - / (28 + )¢ g-a+e) dﬁ} +T(Xa0),

a—c
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(X a,c) = /p°(a —t,c—t) eXP{ -t~ /(2ﬂ +0)l(ee-a+o) dE}dt
0 a-t

m(a=c)exp{ ~ de - / (2 + 0)l (¢ ¢-ac) €
a—c—7
X { / z1(t,a — c) exp{—At}dt

0

a—c

+ / mz(t,a—c)exp{—/\t}dt}, 4.9

a—c~T

and

(X, 0) = Si(A) (1 ~ m(B)N)

S1(\) = / de / B(a,)T(), a, ¢) da. .10)

0 T+cC

Denoting ReA = « and using upper estimates for z and p from (4.9), (4.2), (2.7) we
obtain

[+

IT(A, a,c)| < /exp{()\o — a)t}P(a,c, \o) dt + m(a - c)

0
a

X exp { - /a (20 + o)l(e.e~ate) df} /x(t —c¢,a—c)exp{—at}dt

a—c c
c

< /exp{(/\o — a)t}dt P(a,c, \o) + rﬁ(a )

0
a

X exp{ - / (2p+ U)|(£,£—a+c) dg}f{(a —¢ M)
a-—c
a

x /exp{)\o(t —¢) —at}dt

c
a

= P(a,c, \o) /exp{()\o —a)t}dt. 4.11)
. ‘
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© Assume 8 < fo, m < mo, Bo and myg being positive constants. Then takmg into
account (2.15) and (4.10), (4.11) we get

[S1(A\)] /dc / da B(a,c)Pla,c, Ao)/exp{()\o — a)t}dt
0 T+c 0

a—c

< BoX(0) /dc/daexp —a)\o— /,uds

0 T4cC 0
a

~ [ @+ ln-are dn}mia—0) [ expi(do - cot}at
0

a—c

a a

= (o X(0) /ooda exp{ —aXy — /ﬂ* dS} /exp{t()\o —a)}dt

0 0
a—-T1 a

x [ ma-e{~ [(@+0lnn-oradn}dc

0 a—c
a

< mpBeX (0) 7daexp{ —alo — /ﬂ*ds}(a —-7) /aexp{t()\o —a)}dt.

0

a
Ifa, Ao > M = —ir>1f (l/a)/ i ds, then |S;| is bounded. Let A > A, and Ag with
azT 0

ar = Relp > Ai, k=1,2...be aunique real and complex roots of Eq. 51(B)(A) = 1.
Since oy < g, the inverse Laplace transform yields

z(t,0) ~ exp{lot}q1, @ = 51(/\0)(“"9/1()\0))_1.,

the prime indicates differentiation. Therefore

)

z ~ exp{Ao(t — a)} qup{—{uds}, 0<a<T
X(a)7 a?T,
a

p~ma=cexp{daft—a) = [ (28 +0)lee-ore)

for large time (¢ > a). It is evident that the main term of z and p for large time is the
persistent solution with X (0) = ¢;.
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5. Problem (1.6) in a Particular Case of the Vital Rates

In this section we obtain the solution of (1.6) in the case where i = u, ¢ and m are
constants and 8 depends on all possible variables, and construct its asymptotic behavior
for constant 3 and specialized z°, p°.

Substituting z(t,a,¢) = [ pdb, 2° = [, p°dbinto (1.6) we arrive at the problem

Shr+0z+pr=0, 0<a<r,
a-T1
Bta:+¢9aa:+(u+m)z=(u+a)/zdc, a>r,
)

0tz + 0,2+ 0.2+ 2u+0)z=0, a>1, 0<c<a-r,
[o o] [o o] o0 )
Tlg=0 = /dc / da Bpdb, [T|a=r] =0, z|t=0 = 2°,
0 T+cC T+c
zle=0 = Mz, 2|t=0 = Zo, a>T,
o0

2°(0) = 7dc / da 7ﬂ|t=op0da, [z°(7)] = 0.

0 T+c T4c

In addition to this system we must add the equation for p with respective conditions (see
(1.6)).

If 3 = const, then z|a=¢ = 3 fT°° da : =7 zde and we have the special case of linear
problem (1.7) considered in Sec. 3. Knowing = we obtain p by formula

p%(a —t,b —t,c — t) exp{—~(2u + o)t}, 0<t<e,
p=< mz(t—ca—c)x(t —c,b-c)exp{—(2u + o)c} é.1
(S 2t ~ ¢, ) de)™, < e

¢y = min(t,a —7,b — 7).

If Ao and Re), > —pu for all k, then Re); < Ap, and asymptotics of = can be expressed
by (3.18),1.e.,

agT,

2~ gep{olt=a) —pa} { (o 05T 52
where

Nx(a) = (u+o0+m)"Hu+ o+ mexp{—(u+0+m)a—7)}},
Ao and A are a unique real and complex roots of equation

k(B)(\) = mBexp{—T(A+ )} A+ ) A +2u+o+m) =1,
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and sign)g = sign(x(8)(0) —1). For 7 =0 this characteristic equation has been ana-
lyzed in Hadeler (1989)
Thus

D~ quX(a _ C)Nx(b — c)(/Nx(S) exp{—&(x\o + M)}d€>-1 }

x exp{Xo(t +c—a —b) — p(a + b) — co},
t > min(a,b), Ao > —p. (5.3)

Observe that the main term of 2 and p for large time (¢t > a) is the persistent solution of
(1.6) with X (0) = q.

Now we will consider the general case of 5. By using (5.1) one can obtain

2(t,0) = / de / de / dnB(t,t + €, + 1, p°(E,m, c)dn
0 T+c T+c

x exp{—-t(2u+ o)} + m/H(t, p) dp,
0

o0 [«

B = ew{-@ut o)t - ) [alo.2)az) " [deato)
></dnw(p,n)ﬂ(t,€+t—p,n+t—p,t—p),_ (5.4)

where z is defined by (3.8)—(3.10), i.e.,

z=1x1 =2"a—t)exp{-t2u+0o+m)}+ (z°(a—1t) + fla —t))
x(p+0)(p+o+m)~
x (exp{—tu} — exp{-t(2u + o + m)}),

f%a) = de 0db, 0<t<a—T,

T =120 =120 —t)exp{—tu}(u+ o +m)?
x{p+o+mexp{—-(p+o+m)a—1)}}, a—-T<t<aq,

T =u1x3 =zt —a, 0)Nx(a)exp{—ua}, t>a.

Let A(t, p, €,7) be a function, which can be specified. If t < 7, then fT°° Az(p,€)d¢ =
[TFP Azy dE + ffj_p Az, d€ and, applying this formula to integrals [~ z(p, z) dz and

r
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[ dez(p, €) [ dnz(p,n)B(t, £+t—p,n+t~p,t—p),from (5.4) we obtain z(t, 0).
Thus fo (t, p) dp is known for all £

Ift > T, then
) : T+p
/ z(p, & d{ /A:I:3d§ + / Azod€ + / Az, dE
T T+p
T+p '
/ AzodE + / Ax1d§
T+p
+ A(t, 0,0 = 7,mz(1,0)Nx(p — 7)exp{-p(p - M}dy. (5.5

‘ c\‘b

If 7 <t <27 then p— 7 <t — 7 < 7. Therefore by (5.5) we obtain H(t, p) and then
from (5.4), (5.5) we get z(t, 0) for t € (7, 27] because z(t, 0) is known for0 < ¢t < 7.

Going along axis ¢ by step 7 we construct z(t, 0) for all ¢ > 7 and, consequently, =
and p.

Theorem 5.1. Assume z° and p° are non-negative non-trivial and z° € L*(0,0) N
C1(0,00) NCO([0, 00)), p° € L((T +¢,0) X (T +¢,00) x (0,00)) NCO([ + ¢, 00) x
[T+ ¢,00) x [0,00)) N CH((T + ¢,00) X (T + ¢,00) x (0,00)).

If i = p, o, m and B are positive constants, then (1.6) has a unique non-negative
solution such that

z € C°([0, 00) x [0,00)) N CH(((0,00) x ((0,7) U (T, 00)))\ .
A(t,a): t=a, t=a~1}), (5.6)
p € C°([0, 00) x [1,00) x [T,00) x [0, min(a — 7,b — 7)])
NC(((0, 00) x (7,00) x (7,00) x (0, min(a — 7,b — 7))) \
{(t,a,b,¢c): t=a,t=bt=c,t=a—-7,t=b—1}).

If. moreover, 2° < X(a,Xo), f%(a) < F(a, o), where X, F are defined in Sec. 3,
Ao > —p and ay i with o € (—p, Ao) are real and complex roots of equation
k(B)(A) = 1, then (5.2), (5.3) represent the asymptotic behavior of x and p for large
time (t > a), and z < X (a, o) exp{ot}.

If i = w, o and m are positive constants, § € C([0,00) x [r,00) x [r,00) X
[0, min(a — 7,b — 7)]), and B, 8,8, 8.8, 8B, 8.8 are bounded, then (1.6) has a
unique non-negative solution satisfying (5.6).

NOTE. If i, o and 3 are indepéndent of a, b, then substitution z(t,a,c) = [ 7 pdb
reduces (1.6) to problem (1.7) too, with p replaced by z.
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Pory formavimo modelio i$sprendziamumas ir asimptotika
Vladas Skakauskas

Irodytas simetrinio dvilytés populiacijos modelio i¥sprendZiamumas dviem atvejais ir gautas jo
sprendinio asimptotinis elgesys laiko kintamojo atZvilgiu. Vienu atveju poros formuojamos pagal
harmoninio vidurkio désni, kitu atveju poros partneriai yra vienodo amZiaus.



