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Abstract. In this paper we show that the least mean square (LMS) algorithm can be speeded up 
without changing any of its adaptive characteristics. The parallel LMS adaptive filtering algorithm 
and its modifications are presented. High speed is achieved by increasing the parallelism in the 
LMS adaptive algorithm through a proper modification of the LMS adaptive algorithm. An iterative 
procedures for efficient computation of the lower triangular inverse matrix and the input signal 
covariance matrix are presented. 
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1. Introduction 

The time-domain least mean square adaptive filter algorithm has been used in a variety 
of applications as system modeling, noise cancelling, channel equalization, adaptive an­
tennas, and adaptive array processing (Haykin, 1986; Joint, 1981; Special, 1987). In the 
usual implementation the outputs of a tapped delay line are weighted and summed to pro­

duce the filter output. The weights of this transversal filter which determine its impulse 
response, are updated iteratively based upon the difference between the filter output and 

a desired input, so as to minimize the mean-square error of the difference. A frequency 
domain implementation of an adaptive filter, requiring less computation than its time do­
main counterpart, has been proposed in (Dentino, McCool and Widrow, 1978), In some 
applications good performance can still be obtained with frequency domain techniques 
based on circular convolution, e.g., in the detection of narrow-band signals in broad-band 

noise (Ferrara, 1980). 
The realization of adaptive filters at high sampling rates is important in many applica­

tions, but is made difficult by recursive nature of algorithms. Adaptive filters based on the 
transversal filter have an inherent sampling rate limitation for a given speed OT hardware 
due to the feedback of the residual error to the adaptation of the individual stages (Meng 
and Messerschmit, 1987). 

Due to the availability of high speed parallel processors and fast Fourier transform 

algorithms for convolution, block digital filtering has received great attention (Mikhael 

and Wu, 1987; 1989; Wang and Wang, 1993). The block processing technique involves 

the calculation of a block of outputs from a block of inputs. The block least mean square 



162 K. Kazlauskas 

(BLMS) algorithm in (Clark et aI., 1981; 1983) is a gradient algorithm with a fixed con­
vergence factor J.LB. Similar to the LMS algorithm, J.LB controls the convergence speed, 

accuracy, and stability of the adaptive filter. To obtain a proper convergence factor of 
the BLMS algorithm, a priori knowledge of the input processes as well as trial and error 
are necessary. In the case of a correlated input, the BLMS algorithm has a smaller con­
vergence domain than the LMS algorithm, resulting in a slower overall convergence to 
ensure stability. This is the reason for the well-known fact that the adaptation step must 
be devided by block length M in a BLMS algorithm. 

In this paper, we show that this drawback can be overcome, and that the availability of 
block processing techniques allows the derivation of computationally efficient parallel al­
gorithms that behave exactly the same as their scalar version. These algorithms are just a 
rearrangement of the initial LMS equations. We propose a realization of the conventional 
LMS adaptive filter in the time domain which does converge to the optimum transversal 
filter solution. The proposed method is intended to be a direct replacement for the LMS 
adaptive filter, but requires less computation than the time domain realization. The pro­
posed algorithm converges at the same rate as the time domain LMS filter. Convergence 
at this rate is not always advantageous, e.g., when the correlation matrix of the signals at 
the filter taps has highly disparate eigenvalues. Nevertheless, the LMS adaptive filter has 
widely used and is well understood, so that a fast implementation should be of interest. 

2. The LMS Adaptive Filter 

The LMS adaptive filter (Widrow and Stearns, 1985) is an finite impulse response (FIR) 
digital filter of order L - 1 for which the output y( k) at discrete time instant k is given as 
the convolution sum of the input x( k) and the filter weights Wi (k): 

L-1 
y(k) = L x(k - i)Wi(k) = XT(k)W(k) = WT(k)X(k), k = 0,1,... (1) 

i=O 

The LMS algorithm adjusts the filter weights in accordance with (2): 

. W(k + 1) = W(k) + J.Le(k)X(k), (2) 

where J.L is a parameter that controls rate and stability of convergence, and W(k) and 
X(k) are, respectively, the Lx 1 weight vector and the Lx 1 input vector: 

W(k) = [wO(k),W1(k), ... , WL_1(k)]T, (3) 

X(k) = [x(k), x(k - 1), ... , x(k - L + 1)]T, 

and e( k) is the error at the kth instant given by the difference between the desired output 
y(k) and the actual output y(k): 

e(k) = y(k) - XT(k)W(k). (4) 
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3. The Block LMS Adaptive Filter 

Letting m = 0,1, ... denote the block number, and M = 1,2, ... the block length, there 
are two different vectors of interest for the block adaptive filter. The first is the LxI 
vector X (k) of input stored in the filter's register at time k from (3). The other is the mth 
input data block designed by the M x 1 vector 

x(m) = [x(mM),x(mM + 1), ... ,x(mM + M _l)]T. (5) 

Similarly, the mth 01ltput data block is given by the M x 1 vector y(m) = 

[y( mM), y( mM + 1), ... , y( mM + M-I) f, and desired mth output data block is 

given by the M x 1 vector y(m) = [y(mM), ... , y(mM + M -l)f. Since the filter 
weights are adjusted on a block by block basis, the weights for the mth block are denoted 
by the following element vector 

where the subscripts denote the individual filter weights. 
The block adaptive filter output is given by the equation 

y(m) = X(m)W(m), 

where X (m) is an M x L matrix given by 

X(m) = [ 

x(mM) 
x(mM + 1) 

x(mM+M -1) 

x(mM -1) . 
x(mM) 

Substituting (6) and (8) into (7) yields 

X(mM: L + 1) ]. 

x(mM +M -L) 

y(mM + l) = X(mM + l)W(m), l = O,l, ... ,M -1, 

where X (mM + l) is lth row of the matrix X (m). 

(6) 

(7) 

(8) 

(9) 

Equation (9) gives the elements of y( m), the mth block of the output data, as a linear 
convolution, which can also be written as 

L-1 

y(mM + l) = L x(mM + l - i)wi(m), l = 0, 1, ... , M - 1. (10) 
i=O 

The filter weights are updated as follows (Cl ark et al..1983); 

W(m + 1) = W(m) + 2:; XT(m)e(m), (11) 
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where 

XT(m)e(m) = [Jo(m), h(m), ... , h-l(m)f, (12) 

in which e( m) is an M element vector of errors given by 

e(m) = [e(mM), ... , e(mM + M -1)(, (13) 

with e(k) = y(k) - fj(k) where y(k) is desired response sample. In ~lock form e(m) = 
y(m) - y(m). Substituting (8) and (13) into (12) yields the following expression for the 
ith element of the block mean-square error gradient estimate vector: 

Ji(m) = XT(mM - i)e(m), i = 0, 1, ... , L - 1. (14) 

Equation (14) represents a correlation between the mth error block and the (mM - i)th 

input data block, as can be seen by writting it as a summation 

mM+M-l 

fi(m) = L x(k - i)e(k) 
i=mM 

mM+M-i-l 

L e(n + i)x(n), i = 0, 1, ... , L - 1. 
n=mM-i 

It is apparent that the block adaptive algorithm consists of successive operations of 
block convolution (9), gradient estimation (12), and weight update (11). Note that the 
most efficient choice of block length is M = L. 

4. Parallel LMS Adaptive Filter 

Wer propose here an algorithm for realizing adaptive filters that achieve two objectives 
simultaneously. The first objective is to allow arbitrarily high sampling rates for a given 
speed hardware, at the expense of additional hardware. The second objective is to not 
modify the characteristics of the algorithm, and hence not affect the convergence and 
tracking capabilities. 

4.1. Derivation of the Parallel LMS Adaptive Filter Algorithm 

Consider the LMS equation (2). The solution of the Eq. 2 is (Kazlauskas, 1997): 

n-l 

W(n) = W(k) + J.L L e(j)X(j), k = 0,1, ... , (15) 
j=k 
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where W(k), e(k), and X(k) are defined in (3) and (4). Substituting n = mM + M, 
and k = mM, m = 0,1, ... , into (15), we obtain 

or 

mM+M-l 

W(mM + M) = W(mM) + J.LL e(j)X(j) 
j=mM 

M 

= W(mM) + J.L L e(mM + j - 1)X(mM + j - 1) 
j=1 

= W(mM) + J.LXT(m)e(m), 

W(m + 1) = W(m) + J.LXT(m)e(m) , m = 0,1, ... , 

where 

W(m +,1} = W(mM + M), W(m) = W(mM), 

(16) 

X(m) is an M x L matrix as in (8), and e(m) = [e(mM), ... , e{mM + M -1)f. 
Vector e(m) is formed using values e{mM), . .. , e{rnM + M - 1) .. 
Now we show how to compute these values. Substituting (15) into (4), we have 

n-l 

e{n) = y{n) - XT(n)W(k) - J.LXT{n) L e(j)X(j), n = 0,1,.... (17) 
j=k 

Defining n = mM + i - 1, and k = mM, m = 0,1, ... , i = 1,2, ... ,M, and using 
them in (17), we get 

e(mM + i -1) = y(mM + i -1) - XT(mM + i -1)W(mM) 
mM+i-2 

-J.LXT(mM + i -1) L e(j)X(j) 
2j=mM 

= y(mM + i - 1) - XT(mM + i - 1)W(mM) 
i-I 

-J.LXT(mM + i - 1) L e(mM + j - 1)X(mM + j - 1), 
j=1 

or in matrix form: 

e(m) = y(m) - X(m)W(m) - D(m)e(m). (18) 

From (18), we obtain 

e(m) = (IM + D(m))-I(y(m) - X(m)W(m)) , m = 0,1, .' .. , (19) 
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where IM is the unity matrix, 

y(m) = [y(mM), ... , y(mM + M - l)f, 
W(m) = [wo (mM), ... , wL-1(mM)f· 

D(m) is the M x M matrix defined as 

D(m) = [dij(m)], i,j = 1,2, ... ,M, 

in which 

dij(m) = 0, if i ~ j, 

dij(m) = JLXT(mM + i - l)X(mM + j -1), if i > j. 

(20) 

Parallel LMS adaptive filter algorithm (Egs. 16 and 19) allows us to compute the 
values of weight vector W(m) = W(mM), m = 0,1, ... at the time instants 0, M, 2M 
and so on. In the following section, we shall derive modified parallel adaptive algorithm 
which allows us to compute M values of W(k) simultaneously. 

4.2. Modified Parallel LMS Adaptive Filter Algorithm 

Defining n = mM + l, and k = mM - M + l, m = 0,1, ... , l = 1,2, ... , M, and 
using them in (15), we obtain 

mM+I-1 

W(mM + l) = W(mM - M + l) + JL L X(j)e(j) 

or in matrix form: 

j=mM-M+1 

M 

= W(mM - M + l) + JL L X(mM - M + l + j - 1) 
j=1 

xe(mM-M+l+j-l), l=1,2, ... ,M, 

W(m) = W(m - 1) + B(m)E(m), m = 0,1, ... , 

where the M LxI vectors W (m) and W (m - 1) are defined by . 

- [ T W(m) = W(mM+l), ... ,W(mM+l), ... , ... ,W(mM+M)] , 

(21) 

W(m -1) = [W((m - I)M + 1), ... , W((m - I)M + l), ... , W(mM)f, 

the ML x M2 matrix B(m) is defined by 

B(m) = blockdiag{~(m, 1), ... , B(m, l), ... , B(m, M)}, (22) 
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in which the L x M matrix 

B(m, l) = [X(mM - M + l), ... , X(mM + l- 1)], 

and the M2 x 1 vector E(m) is defined by 

E(m) = [e(mM - M + j), ... , e(mM - M + l + j - 1), ... , 
e(mM+j-1)]T l=1,2, ... ,M, (23) 

in which 

e(mM-M+l+j-1) = [e(mM-M+l), ... ,e(mM+l-1)f, 

j~1,2, ... ,M. 

Vector E(m) in (21) is formed from values e(mM), ... , e(mM + M -1), which we 
compute using Eq. 19. Modified parallel LMS adaptive algorithm (Eqs. 21 and 23) allows 
us to compute M weights W(mM + 1), ... , W(mM + M) simultaneously. Thus, this 
algorithm is useful in the case we need to calculate all weights and to ensure high speed 
adaptive filtering. 

4.3. Modified Parallel LMS Adaptive Filter Algorithm 2 

Defining n = mM + i, k = mM, m = 0,1, ... , i = 1,2, ... , M, and using them in 
(15), we have 

mM+i-1 

W(mM + i) = W(mM) + JL L e(j)X(j) 
j=mM 

i 

= W(mM) + JL L e(mM + j - l)X(mM + j - 1), 
j=l 

i = 1,2, ... ,M, 

or in matrix form: 

W(m) = W(mM) + JLX(m)e(m), 

where 

W(m) = [W(mM + 1), .. '.' W(mM + M)f, 

W(mM) = [W(mM),.:., W(mM)f, 

e(m) = [e(mM), ... , e(mM + M -l)f, 

(24) 
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and the LM x M matrix X (m) is defined by 

X(m) = [Xij ], i,j = 1,2, . .. ,M, (25) 

in which 

X ij = 0, if i < j, 
X ij = X(mM + j - 1), if i ~ j. 

Vector e(m) = [e(mM), ... , e(mM + M - 1)f is computed using Eq. 19. Modified 
parallel LMS adaptive Algorithm 2 calculates all weights in every time instant, and en­

ables us to compute M weights values simultaneously. Thus, it is applicable in the parallel 
adaptive filtering schemes. 

5. Algorithm Realization Considerations 

To realize the parallel LMS adaptive algorithms, we need to calculate inverse matrix 
t-I(m) = (IM + D(m))-l(see Eq. 19). 

Define gem) = y(m) - X(m)W(m) = [91(m), ... 9M(m)]T. Then (19) in matrix 
form: 

(26) 

where e(m) = [el(m), ... , ei(m) ... , eM(m)f, in which ei(m) = e(mM + i-I), 
i = 1,2, ... , M and dij(m), i,j = 1,2, ... , M are as in (20). 

From (26), we obtain recurrent equation for calculation ei(m): 

i-I 

ei(m) = 9i(m) - L dijej(m), i'"= 1,2, ... , M. (27) 
j=1 

In some practical situations, when we need to calculate all ei(m), i = 1,2, ... , M 
values simultaneously, the following algorithm for calculation inverse matrix is defined 
by 
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PROPOSITION 1. The inverse matrix t-1(m) of the M x M lower triangular matrix 

t(m) = [dij(m)], dii(m) = 1, i,j = 1,2, ... , M is defined by 

0, 
1, 
dij (m), 
det(Dij(m) = [dkl(m)], 
k=j+1,j+2, ... ,i, 

if i < j, 
if i = j, 
if i = j + 1, 

l=j,j+1, ... ,i-1), if i>j+L 

(28) 

Calculation of the matrix D(m). 

From (20), it follows for i > j, that 

dij(m) = J.LXT(mM + i - l)X(mM + j - 1) 

= J.L[x(mM + i - l)x(mM + j - 1) + x(mM + i - 2) 
xx(mM + j - 2) + ... + x(mM + i - L)x(mM + j - L)], (29) 

and 

di+l,j+l(m) = p,XT(mM + i)X(mM + j) 

= J.L[x(mM + i)x(mM + j) + x(mM + i -l)x(mM + j -1) 

+ ... +x(mM+i-L+1)x(mM+j-L+1)]. (30) 

Thus, using (29) and (30), we obtain 

di+l,j+1(m) = dij(m) + J.L[x(mM + i)x(mM + j) 

-x(mM + i - L)x(mM + j - L)], (31) 

for j = 1,2, ... , M - 2, and i ? j + 1; m = 1,2, ... Eq. 31 provides the computations 
to be performed recursively along the subdiagonals of the matrix D( m). 

Now we derive the recursive expression of the first column di,l (mM + M) of matrix 
D(m) in terms of the last row dM,M-i+1(mM) of matrix D(m) during the previous 
block. The first column of matrix D(m) (20) can be expressed as: 

di,l(mM + M) = J.LXT(mM + M + i - l)X(mM + M) 

= J.L[x(mM + M + i - l)x(mM + M) 

+x(mM + M + i - 2)x(mM + M-I) + ... 

+x(mM + M + i -l - l}x(mM + M -l) + ... 

+x(mM + M + i - L)x(mM + M - L + 1)]. (32) 
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The last row of matrix D(m) during the previous block can be expressed as: 

dM,M-i+l(mM) = pXT(mM + M -l)X(mM + M - i) 

= p[x(mM + M - l)x(mM + M - i) 

+x(mM + M - 2)x(mM + M - i-I) + ... 
+x(mM + M -l-l)x(mM + M - i -l) + ... 
+x(mM + M - L)x(mM + M - L - i + 1)]. (33) 

Then, it follows from (32) and (33), that 

di,l(mM + M) = dM,M-i+l(mM) 

+p[~X(mM + M + l)x(mM + M + l- i + 1) 

- ~X(mM + M + l- L)x(mM + M + l- L - i + 1)], 
i = 2,3, ... , Mj m = 0,1,.... (34) 

So, the matrix is computed as follows: 
1. Using the last row dM,M-i+1 (mM) of the matrix D(m), we compute the first 

column di,l(mM + M) of the matrix D(m) during the next block (Eq. 34). 
2. Using these first column values, we provide the computations recursively along 

the subdiagonals of the matrix D(m) (Eq. 31). 

6. Conclusion 

We show that the LMS algorithm can be speeded up by the use such block formulation, 
which allows LMS algorithm to be exactly equivalent to the sample-by-sample LMS. 
We demonstrate a realization of adaptive filters for which there is no theoretical limit on 
sampling rate in a given speed of hardware, at the expense of additional hardware and 
latency. Our realization does not change the adaptive characteristics and hence does not 
degrade the adaptive filter tracking capability. This technique can be applied to many 
different algorithms in the LMS family. 
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LYGIAGRETUS ADAPTYVUS FILTRAVIMAS 

Kazys KAZLAUSKAS 

Straipsnyje parody ta, kad maziausillill kvadratll adllptyvus filtravimo algoritmai gaJi bUti pa­
greitinti nepakeiciant jl.! charakteristikll. Nagrinejamas lygiagretus adaptyvus filtravimo algoritmas 
ir jo modifikacijos. Sio algoritmo greit\ teoriskai galima didinti be galo papildomos procesorines 
i,rangos ir latentiskumo s'lskaita. Aprasyti zemutines trikampes atvirkstines matricos ir ~ejimo sig­
nalo kovariacines matricos skaiCiavimo algoritmai. 


