
INFORMATICA, 1998, Vol. 9, No. 2,123-140
© 1998 Institute of Mathematics and Informatics, Vilnius

Numerical Integration on Distributed-Memory
Parallel Systems

Raimondas CIEGIS *
Institute of Mathematics and Informatics, Vilnius Gediminas Technical University
Akademijos 4, 26000 Vilnius, Lithuania '
e-mail: raimondas;ciegis@fm.vtu.lt

Ramiinas SABLINSKAS
Vytautas Magnus University
Vileikos 8,3035 Kaunas, Lithuania
e-mail: ramas@omnitel.net

Jerzy WASNIEWSKI
The Danish Computing Centre for Research and Education
UNI-C, Bldg. 305, DK-28oo Lyngby, Denmark
e-mail: Jerzy.Wasniewski@uni-c.dk

Received: November 1997

123

Abstract. In this paper we describe implementation of numerical adaptive algorithms for multi­
dimensional quadrature on distributed-memory parallel systems. The algorithms are targeted at
clusters of workstations with standard message passing interfaces, e.g., PVM or MPI. The most
important issues are communication and load balancing. Static and dynamic partitioning of the
region are considered. Numerical results on various workstation clusters are reported.

Key words: parallel adaptive integration, distributed-memory parallel computers, load-balancing.

1. Introduction

We consider the problem of determining a numerical approximate value of the multi­
dimensional integral

I(f,O) = l f(x) dx,

within a given accuracy c, where 0 = [a~, b1] x [a2' b2]' .. [an, bn] is the range of in­
tegration and f(x) is the integrand function. Numerical calculation of multiple integrals
demands for large amounts of computing time (see Stroud, 1971). Hence parallel adaptive
algorithms are particularly interesting (Bull and Freeman, 1995; Freeman and Phillips,

• Corresponding author

124 R. Ciegis et al.

1991; Genz, 1982; Genz, 1990). The whole task is subdivided into smaller subtasks which
can be solved in parallel on different processors. There we must try to preserve load bal­

ance and we must take into account communication costs. The solution of both problems
depends strongly on the characteristics of the parallel computer used in computations.
The algorithms of this paper are targeted at clusters of workstations with standard mes­
sage passing interface. We use PVM in our numerical experiments (Geist et al., 1993).
The important features of such parallel computers are heterogenity of the cluster and
unfavourable ratio between computation and communication rates. Our goal is to design
parallel numerical integration algorithms which use minimal amount of data communica­
tion. We will develop static and dynamic task distribution algorithms and will investigate
the importance of tradeoff between load balancing and communication costs.

In Section 2 we review the basic parallel algorithms developed for multi-dimensional
integrals. In Section 3 a simple straightforward parallel implementation of the standard
serial multi-dimensional algorithm is used to illustrate the importance of the load bal­
ancing and communication latency on the efficiency of parallel algorithms. Numerical
results for one test problem are presented. The algorithm of initial static partitioning of
the region of integration and static subtasks distribution is described in Section 4. Nu­
merical results for the SSSD algorithm are given in Section 5. In Section 6 we describe a
mosaic static subproblems distribution algorithm. Dynamic task distribution algorithms
are investigated in Section 7.

2. Parallel Algorithms

Numerical integration algorithms attempt to approximate 1(1) by the sum (Stroud, 1971)

N

SN(1) = LWi!(Xi). (2)
i=l

The numbers Wi are called weights, and the Xi are called knots. They determine the
type of the basic rule. Efficient numerical algorithms are adaptive and a strategy for selec­
tion of hyper-rectangles for further subdivision is included into the algorithm, see, e.g.,
Johnson and Riess (1982). The cubature rule pair, which was used for all our numerical
experiments, is due to Genz and Malik (1980). The standard routine DO IFCF in the NAG
library is also based on this formula, see also parallel adaptive algorithms given in Bull
and Freeman (1995); Genz (1990). This cubature formula requires 2d + 2d2 + 2d + 1
evaluations of the integrand to estimate the integral 1(1) over ad-dimensional hyper­
rectangle. We also get the dimension of the hyper-rectangle in which the integrand is
most badly-behaved and this dimension is used for futher subdivision. The most simple
way to get a parallel integration algorithm is to distribute 2d + 2d2 + 2d + 1 integrand
evaluations among p processors. This algorithm is refered to as the Fine-Grained (FG) al­
gorithm and is well suited in the case of fast communication or when a cost of integrand
evaluation is high. We mention the main drawbacks of the FG algorithm:

Numerical Integration

1. The number of processors that could be exploited is limited to the number of .
points in the quadrature rule for a pair of hyper-rectangles.

2. It requires a very large data communication.

125

The second characteristic of the FG algorithm is most important for parallel computers
based on distributed workstations. In Section 3 we will give a more detailed analysis of
the FG algorithm and will present the results of numerical experiments.

Many authors have considered parallel algorithms for numerical integration which
exploit the coarser-grained parallelism by identifying not one but a number of hyper­
rectangles to be bisected. Then each processor calculates integral approximation and error
estimate for the whole hyper-rectangle (or for a number of hyper-rectangles). We obtain
new algorithms which can be more efficient even for serial computers in some cases (Bull
and Freeman (1995».

Next we review some hyper-rectangle selection methods used in these algorithms,
a more complete survey is given in Bull and Freeman (1995). In the Dynamic Asyn­
chronous algorithm (Bull and Freeman, 1994; Bull and Freeman, 1995) each pair of
processors finds hyper-rectangle with largest error estimate which is inactive, marks it
active, bisects it and applies quadrature rules to both hyper-rectangles in parallel. In the
Dynamic Synchronous algorithm (Genz, 1982; Genz, 1990) at each stage we identify
p/2 hyper-rectangles with largest error and subdivide them in such a way as to keep all
p processors usefully busy. Many other strategies are used in the Dynamic Synchronous
algorithm (Bull and Freeman (1995». We will mention only few of them. It is suggested
to identify all the hyper-rectangles with error estimates greater than aEmax , for some a

. satisfying 0 < a < I, where Emax is the largest error. Gladwell (1987) suggested to rank
the list of hyper-rectangles by error estimates so that Cl < C2 < < Cs and then.to
calculate r such that

r-l

:LCi ~ C, (3)
i=l

where C is the given accuracy. Then we identify all the hyper-rectangles with error esti­

mates ~ Cr.

Even these algorithms using coarser-grained parallelism can be not effective for par­
alle! computers based on distributed workstations. They require many synchronization
points and constant communication during computation time. Further for multidimen­
sional integrals the stage of searching and updating the list of hyper-rectangles can also
be cost-expensive. It is possible to parallelize the region selection stage, but up to three
additional synchronization points must be included into the algorithm.

Hence in this paper we will investigate parallel numerical integration algorithms that
impose some static partitioning of the region of integration and will consider various
strategies of distribution of these independent subproblems among processors. Similar
algorithms were considered in De Doncker and Kopenga (1992); Lapenga and D' Alessio
(1993). In order to minimize the data communication we will not use any mechanism for
redistribution of the work to the other processors in the case of load imbalance.

126 R. Ciegis et al.

3. FG Algorithm

We wiJI consider an implementation of the FG algorithm in this section. This example
enables us to describe in detail the problems of development of parallel numerical inte­

gration algorithms for workstation clusters in the cases when we have a very unfavourable

ratio between computation and communication rates.

3.1. Parallel Algorithm

As it was stated above, the FG algorithm coincides with the serial one, only a work of

evaluation of the 2N integrands is distributed among p processors at each bisection stage ..

The most significant change that was made for our integration routine was the summation

of signed regional errors instead of absolute values of the errors. We note that the routine
overestimates the error. It defines the error made in region Dj as

(4)

where S N7 and S N5 are approximations of the integral I (J, Dj) by the seventh and fifth
order rules, respectively. Hence the routine uses a partition of the integration region 0.
sufficient for the fifth order formula to be accurate within the specified accuracy and

calculates an approximation of the integral by the seventh order basic rule.

First we consider a static task distribution algorithm for achieving the load balance
on all p processors. Let assume that we have a heterogenous workstation cluster with

known computational rates estimates. Let denote computational rates Vj and rank the list
of workstations so that

(5)

Then the load balancing is achieved if i-th processor calculates Ni integrands, where the

number Ni is defined by the following minimization problem

min m~x Tj = T*,
Ni l~J~p

(6)

(7)

Solution of this problem is given in Ciegis et al. (1996) and is described in Algorithm 1.

Numerical Integration

Algorithm 1
1. Calculate initial estimates of Ni

Ni = l2N~;,J,i = 1,2, ... ,p,

Vp = Vl + V2 + ... + vp ,

where l z J denotes the greatest integer less than or equal to z.
2. Calculate the remainder of undistributed integrands

q = N - (Nl + N2 + ... + N p).

3. Distribute the remainder among processors
for (i=l; i<=q; i++)

f' d T· - N;+l '-12 . In J - --v.;-' J-, ,p,
find Tk = minj Tj ;

Nk = Nk + 1;
end for

127

The multi-processors or clusters of workstations are not the single-user computers de­

voted to one application at a time. Hence computational rates of processors can change
significantly during computations. In such a situation the dynamical distribution algo­

rithm can give better load balancing results, but it enlarges the communication volumes
as well. We have used the dynamical distribution algorithm in all numerical experiments
reported in this section.

3.2. Experimental Environment

As it was mentioned above, we performed all numerical experiments on virtual parallel
computers based on distributed workstations connected by a local network or INTER­
NET. PVM is used as a message-passing interface. The cluster was located in various

Universities of Lithuania and consisted of up to 21 various heterogeneous workstations.
The types of computers and relative computational rates are given in Fig. 1.

It is often convenient to view costs of data communication between nodes in terms of
performing floating-point operations on the nodes. Evaluations of such rates are given in

the next section for several different host architecture types.
We are interested in the performance of parallel algorithms on distributed-memory

multiprocessors. Hence we will define the speed-up Bp as (see Ciegis et al. (1996))

(8)

where Tp is the time used to solve the given problem on p processors, Ts represents a
time for the sequential algorithm. In order to compare different algorithms we wiII also

define the quality of the parallel algorithm as

Q = i:· (9)

128 R. Ciegis et al.

briedis, IBM PC

lokys. IBM PC

liulas, IBM PC

aitvaras, IBM PC

laima, IBM PC

rama , IBM PC

vilkas. IBM PC

slumbras, IBM PC

vaidila, IBM PC

"aiva, IBM PC

ns2,18MPC

% cs. IBM PC
~

lapule, IBM PC

krivis, SPARe 5

rikis. SPARC 10

vy1aulas. HPPA

jog •. RS6000

mild •. RS6000

perkunas, RS6000

pikuolis, AS6000 .~ ., ,,'

trimpas. RS6000

Relallve spe<!d

Fig. I. Parallel Virtual Machine Cluster used in computations.

The efficiency of a p-processor parallel algorithm is given by Ciegis et al. (1996)

(10)

where VI is the computational rate of the workstation used as the unit of performance and
Vp is a total computational power of the given cluster

(11)

We will also be interested in the balancing of the work distribution among the processors.

The balancing defines variation of the task quantity for each of the nodes:

B . pieces tot Vj
p = mm. '-,

1 ~J ~p pzeces j Vp
(12)

where pieces tot is the total amount of hyper-rectangles processed by the computer cluster

and piecesj is the amount of hyper-rectangles assigned to one of the processors. This

definition is used in the case of heterogeneous computer cluster.

Numerical Integration 129

3.3. Test Problems

We selected four problems which exhibit a variety of integrand function behaviour.
Problem 1.

1 lIS r r ... r L exp(2xi) dx, c = 10-6 .

lo lo lo i=l
(13)

The Problem 1 has no special features in the integrand. We can expect to get a good
load balancing after implementation of the distribution algorithm which is described
above.

Problem 2. We calculate the same integral as in Problem 1, but we add appropriate
delays so that the evaluation times for the integrand become highly varying. In our prac­
tical implementation we incorporate a dummy loop into the evaluation of integrand f (x)
and repeat it a(x) times. This effectively simulates a complicated function with varying
computational profile. For the Problem 2 a(x) is defined by the following formula

4

a(x1,x2, ... ,xs) = IIl2. x; + 1.0J. (14)
j=l

Problem 3 (Johnson and Riess. 1982).

11 111111 4 2 () , X1 X 3 exp X1 X 3 -9
(1 2)2 dX1 dX2 dX3 dX4, c = 10 .

o 0 0 0 + X2 + Xl
(15)

Problem 4 (John son and Riess. 1982).

(16)

This problem has a strong corner singularity. hence we again have difficulties with
load balancing.

3.4. Numerical Results for the FG Algorithm. Computation and Communication Rate
Comparison for Various Complexity of the Test Problem

In this section we present experimental results obtained for the FG algorithm. The ex­
perimental environment we described in Section 3.2 consists of heterogeneous computer
cluster. It is well known that for parallel computers with distributed memory the most
important characteristic is the ratio of computation to communication times. The latency
times for clusters of workstations still are very large. We will try to determine the com­
putational complexity of the integrand function which makes the FG algorithm effective.

For this reason we incorporate dummy loops in function evaluation so that it evaluates
the integrand function a times. The Table 1 shows the computational times in seconds for

130 R. Ciegis et al.

Table 1

The computational time for the Problem 1 with a(x) = a on various architectures with p = 1 processor

a SPARe LlNUX HPPA RS6000

459 412 362 163

10 514 450 373 165

100 985 886 501 204

1000 5827 5171 1787 606

Table 2

The computational times for the Problem 1 with various p for a = 1000

P Total time Ttot Speed-up Sp Efficiency Ep

5171 1.00 1.00

2 2788 1.85 0.93

3 1896 2.73 0.91

4 1610 3.21 0.80

5 1370 3.70 0.74

various values of a on various architectures for the Problem 1 with a(x) = a. Only one
slave process was used in computations.

From the Table 1 we conclude that the unit subproblem should be approximately 1000
times as difficult as the integrand function of the test Problem 1 to have a sense in parallel
computations. In such cases the data exchange between processors will take up less time
than computations. The Table 2 shows CPU time Ttot , speedup Bp and efficiency Ep for
the Problem 1 on various numbers of processors for a = 1000.

From the results in Table 2 we conclude that the efficiency of FG algorithm is de­
grading as we increase the number of processors since there is an increasing amount of

communication that could not be parallelized.

4. Static Subdivision - Static Distribution Algorithm

In this section we will consider the most simple static subdivision - static distribution·
(SSSD) algorithm.

The first step is an initial static partitioning of integration area n into smaller byper­
rectangles

(17)

Numerical Integration 131

Thus, the integral (1) can be written as:

N

1(f, n) = 2:1(f, nj). (18)
j=1

Numerical approximation of 1(f, nj) is an independent problem and it can be solved
concurrently. Each subintegral 1(f, nj) is approximated by the numerical quadrature for­
mula (2) with the given accuracy C j. The error tolerance for each subregion can be defined
in non-unique way. In a locally adaptive scheme Cj is chosen proportional to the volume
of the region, i.e.,

vol(nj)

Cj = C voln . (19)

In a g loba,lly adaptive scheme the error tolerance for each subregion is chosen to reflect an
assumed distribution of the error within n. We will use the first scheme in all numerical
experiments.

A master/slave model is used for the implementation of the SSSD algorithm. The
master process distributes subtasks to slave processes and collects the results. The slave
process calculates the approximation of the integral over given subregion nj and returns
the result to the master. The load balancing and communication properties of the SSSD
algorithm are quite opposite to the same properties of the FG algorithm. Communication
volumes of the SSSD algorithm are limited to the minimal amount. But the main difficulty
with this algorithm stems from load balancing. There .are two primary reasons for the
load imbalance. Firstly, it is very likely that the number of subdivisions required within
different hyper-rectangles nj will vary considerably. Secondly, the computational work
load of each workstation can change dramatically during the time of computation, as new

. users and/or applications could be added/removed in the parallel system. The numerical
results will be given in the next section.

REMARK 1. We have estimated the computational rate of each processor at the begin­
ning of computations by running a simplified benchmark with the same integrand func­
tion.

5. Numerical Results for the SSSD Algorithm

5.1. Homogeneous Cluster Case

First we assume that all computers in the virtual machine are of the same computational
rate, Le.,

VI = V2 = ... = vp = 1 . (20)

As a consequence all slave processes receive subproblems of equal size.

132

Q.
::::s
I

" Q)
Q)
Q. en

R. Ciegis et at.

Table 3

The computational results of the SSSD algorithm for theProblem I

p T tot Q Bp Ep B

I 1281 1.00 1.00 1.00 1.00

2 650 1.00 1.98 0.99 0.99

3 380 1.18 3.38 1.13 0.95

4 329 1.00 3.90 0.97 0.98

5 203 1.33 6.30 1.26 0.95

6 192 1.18 6.68 1.11 0.94

7 174 1.25 7.38 1.05 0.84

8 166 1.00 7.70 0.96 0.96

...........
2 -1----- ,.41. ~---

1 ~---~- --.--- -+-------+-.-.---... -.....

o ./
o 2 4 6 8

Number of processors

Fig. 2. The speed-up plots for the Problem I. The cluster of workstations is homogeneous.

In Table 3 we present experimental results for the Problem 1. Experiments were per­
formed with various numbers of workstations included into the cluster. Fig. 2 shows the
speed ups for the SSSD algorithm as a function of the number of processors.

We notice that we obtain a comparetively good load balancing and efficiency. The
integrand function of the Problem 1 has a sITlall variation in complexity over computation
region. The imbalance is also influenced by the initial area subdivision algorithm. From
the results in Table 3 we can observe this influence for various number of stations.

5.2. Heterogeneous Cluster Case

In this case the subproblems are distributed among workstations proportionally to the rel­
ative computational rates. The Fig. 3 shows the speedups for the Problem 1 as a function
of clusters computational power. The legend indicates the number of workstations in the
cluster represented by a point. The speed-up in this figure is affected by two factors - the

"

12

10

CL
i' • -g
l.
en

/
/

Numerical Integration

00

! •
0-"'- • .

• ~
~

.",-

• . . • . ~ •

X I!I

.

1.
Cluster rate

I!l I!l

. :/
/- I!l

••
• •

.1i"2
.Q.3

"CI.4
XCI.!!
eet.1!
.CI,7

.±J?!.!._
12 14

Fig. 3. The speed-up Sp for the Problem I on different heterogeneous computer clusters.

12r------,-------r------~------.-----~------~----__,

,.t-----t---+---I----+--+ .. /=--............ --!.t------=---l
• •

".,,'
.... • :

.~. .
......... ... ·0 ..

~ • t------t-------+------:-,.jj. 'f-/ -.'T4--.--+---'"----+-------i-------I 8! /~;;,"...... • •
Jt.r-----~------~~··;·I~~~~·~·,.·+-------~-----+------~----~ .. - - -

/' • .-#~. • •

...... ~ .
. ~/----~----~--~--~----~----~----~----~
• 10 ,.

" Cluster rate

Fig. 4. The speed-up S; for the Problem 1 on different heterogeneous computer clusters.

133

algorithm quality Q and the load balancing B. After we eliminate the quality factor, only
load balancing influences the results. The Fig. 4 plots the speedups with the quality factor

eliminated:

B* = Bp
p Q'

(21)

We notice, that speed-up trend is decreasing for large computer clusters. The fall of speed­
up is also invoked by the absolute value of the computational time of the integral. The

bigger computer clusters have shorter computation times which makes load balancing

more sensitive for delays.

134 R. Ciegis et al.

Table 4

The computational results of the SSSD algorithm for the Problem 2

p Tto t Bp Ep Q B

915 1.00 1.00 1.00 1.00

2 718 1.27 0.64 1.00 0.80

3 451 2.03 0.68 1.04 0.83

4 520 1.75 0.44 0.97 0.70

5 433 2.11 0.42 1.03 0.74

6 496 1.84 0.31 1.00 0.65

7 515 1.78 0.25 1.00 0.60

8 547 1.67 0.21 0.94 0.55

Table 5

The computational results of the SSSD algorithm for the Problem 3

p Ttot Bp Ep Q B

1 97.9 1.00 1.00 1.00 1.00

2 43.9 2.23 1.11 1.01 0.93

3 37.9 2.58 0.86 1.04 0.70

4 31.0 3.16 0.79 0.98 0.68

5 33.7 2.90 0.58 0.85 0.57

6 29.5 3.32 0.55 0.79 0.59

7 26.8 3.65 0.52 0.89 0.50

8 23.0 4.25 0.53 0.95 0.48

From the results given above we conclude that the adaptation of tasks distribution to
relative computational rates of computers increases parallel efficiency of the algorithm.

The minimal communication model in the SSSD method enables us to include into a
cluster of workstations subclusters with high communication latency.

5.3. The Drawbacks of the SSSD Algorithm

There are two primary reasons for the disappointing performance of the SSSD method on
distributed memory multiprocessors. The first factor is that the subproblem distribution
algorithm of the SSSD method assumes that integrand function has no special features
and all subproblems are of the same computational difficulty. In the case of highly vary­
ing complexity of the integrand function the parallel performance is degraded due to
load imbalance. As an illustration of this situation we consider the results obtained for
the Problem 2 and the Problem 3 on homogeneous workstation cluster. The results are
presented in Table 4 and Table 5, respectively.

160
140
120
100
80 .
60
40
20
o

processors

Numerical Integration

a)

300

250
~--.--------

j ~~~ +------_.-
ii: 100
()

50

processors

135

b)

Fig. 5. CPU times of different processors in solving Problem I with the SSSD algorithm for the first (a) and
second (b) runs.

The second reason for the disappointing parallel performance of the SSSD method
on distributed workstations is that a workload of any station can change significantly
during computations. The static distribution algorithm can not resolve this challenge.
As an example, consider experimental results obtained for Problem 1 on 3 workstation
cluster.

Two runs of the SSSD algorithm were done. Figure 5a plots the execution times for
all three processors in the case of homogeneous cluster of workstations. In the second
run an additional dummy problem was started on the third processor, hence the relative
computational speed of this processor decreased two-fold during computation. Figure 5b
plots the obtained execution times for the second run.

6. Mosaic Distribution Algorithm

The performance of the SSSD method could be improved by using the mosaic subprob­
lems distribution algorithm (SSMD method). The main goal of the mosaic rule is to avoid
large portions of sequential subregions to be sent to the same computer. We consider two
simple mosaic distribution algorithms. They are described in pseudocode as follows:

Mosaic algorithm 1
1. Make initial partitioning of the integration region S1 = U~l S1 j .

2. Apply the SSSD algorithm in each of subregions S1j .

The second mosaic rule uses pseudo-random numbering of subregions. The number
of subregions must be sufficiently large in order to preserve load balancing.

Mosaic algorithm 2
1. Make initial partitioning of the integration region S1 = U~l S1 j .

2. By using pseudorandom numbers define a new numbering list
of the subregions

10 =S1r (j), j = 1,2, ... ,M.
3. Distribute subproblems 1(j, 10) according to distribution algo­

rithm of the SSSD method:
Table 6 shows the results of SSMD method applied to the Problem 2. We have used

the Mosaic algorithm 1 to generate a mosaic distribution. All results are obtained for
M=4.

136 R. Ciegis et al.

Table 6

The computational results of the SSMD algorithm for the Problem 2

Processors p Ttot Bp Ep

915 1.00 1.00

2 628 1.46 0.73

3 435 2.10 0.70

4 381 2.40 0.60

5 413 2.22 0.44

6 399 2.29 0.38

7 405 2.26 0.32

8 404 2.26 0.28

Table 7

The computational results of the SSMD algorithm for the Problem 3

Processors p Ttot Bp Ep

97.9 1.00 1.00

2 46.4 2.ll 1.06

3 31.2 2.27 0.76

4 26.2 3.74 0.93

5 28.8 3.40 0.68

6 25.0 3.92 0.65

7 19.1 5.13 0.73

8 17.3 5.66 0.71

Comparing the obtained results with the numerical results presented above for SSSD
method we find out that the mosaic distribution algorithm gives much better parallel
performance.

The results obtained with SSMD method for the Problem 3 are given in Table 7. The
number of subregions is M = 8.

Examples given above show that the SSMD algorithm is more successful than the
SSSD algorithm for many multi-dimensional integrals. Nevertheless we can construct
counter-examples for which the parallel performance of the SSMD algorithm is as bad as
one of the SSSD algorithm or even worse.

7. Dynamic Distribution Algorithm

The main difficulty with the SSSD and SSMD methods stems from load balancing. We
have mentioned two primary reasons for the possible bad performance of these methods,
i.e., the variation of work load on workstations during computation and the variation of
the number of subdivisions required within the different subregions.

Numerical Integration 137

Table 8

Influence of the granularity on the algorithm quality for the Problem 3

M Total pieces Quality Q Time Ttot

2 82932 1.00 43.9

4 84921 0.98 41.9

8 86989 0.95 40.6

16 96528 0.86 45.0

32 97179 0.85 45.2

64 98557 0.84 45.4

128 100181 0.83 46.7

Table 9

Influence of the granularity on the load balancing for the Problem 4

Number of packets Time imbalance Il T Total time Ttot

2 14.6 18.2

4 9.6. 16.8

8 2.4 14.1

16 0.7 8.9

32 0.1 11.0

64 0.1 16.7

A solution of this problem can be achieved only enlarging communication volumes
of the method. We have noted above that for parallel computers based on distributed
workstations communication bandwidth is small and latency times are very large. Hence
we must try to improve the computational load balancing among the processors while
preserving simultaneously communication volumes as small as possible.

In this section we describe a dynamic subproblem distribution algorithm. We will
use the well known parallel algorithm prototype: master-slave algorithm. This general
method is apropriate when the amount of work for solving each subproblem is difficult
to predict and when slave processes do not have to communicate with one another. Such
situation also arises on clusters of workstations with varying loads, even if equal amounts
of work are assigned. In this case the time for each processor to complete its task might
vary widely.

The master part of the algorithm is given by the following code.

1. Form a pool of tasks Pj , j = 1,2, ... , M.
2. Send one problem from the pool of tasks to each slave.

3. do while (M results are received from slaves)
receive a local result from the j-th slave process;

138 R. Ciegis et at.

receive a local result from the j-th slave process;
accumulate this local sum in a global sum;

if (the pool of tasks is not empty)
send the next task Pk to the j-th slave.

else
send a termination message to the j-th slave.

end do

All slave processes execute the following algorithm:

do while (termination message is received)
receive a message from the master process;
if (a problem Pk is received)

calculate a local result for Pk;
send this result to the master;

end if
end do

The next step in construction of the dynamic distribution algorithm is to define the
pool of tasks Pj. The analysis in Section 3.4 shows that each problem Pj must be larger
than an elementary application of bisection part of the basic integration rule on the se­
lected hyper-rectangular. Taking into account high overheads in startup times for clus­
ters of workstations we consider the method which is refered to as the Static Subdi­
vision Dynamic Distribution (SSDD) method. First we make initial partitioning of the
region f2 = f21 U f22 U ... U f2M. Then a pool of tasks is formed from subproblems
I(j, lf2j), j = 1,2, ... , M. We do not include any task redistribution mechanism into
our algorithm.

-........... -..... _ -..... -... -......... --.--....... -- -............. ----... ,.....-----..... ---...... --'---7
20~--------4---------~--------_+~------~~~------• __ ~

"~--I-----~/.-----'--!.---+-------l
i.. p.
ar +---------~------~--~~~------+---------4---------~ /

Cluster rate

Fig. 6. The speed·up Sp for the Problem 2 on different heterogeneous computer clusters.

Numerical Integration 139

The experimental results given in Table 8 show how the size of dynamically dis­
tributed packets (granularity) influences computational quality Q and total computational
time T for the SSDD algorithm. Two hosts were used in computations.

In the cases when the integrand function has "bad" areas, the grater granularity gives a
better load balancing. In Table 9 we present results for the Problem 4, where tl.T denotes
the time imbalance

tl.T = Ttot - T min. .(22)

The cluster consisted of two homogeneous workstations.
The computational results given in Fig. 6 show the speed-up Bp for various heteroge­

neous computer clusters for the Problem 2.
Comparing the results from Fig. 6 with the results from Fig. 4, we can observe the

better load balancing of the SSDD algorithm.

References

..
Bull, J.M., and T.L. Freeman (1994). Parallel algorithms and interval selection strategies for globally adaptive

quadrature. In C. Halatsis, D. Maritsas, G. Philokyprou and S. Theodoridis (Eds.), PARLE'94: Parallel
Architectures and Languages, Eumpe. Lecture Notes in Computer Science, Vol. 817. Springer Verlag, Berlin.
pp. 490-501.

Bull. J.M., and T.L. Freeman (1995). Parallel globally adaptive algorithms for multi-dimensional integration.
Appl. Numer. Math., 19, 3-16.

Ciegis, R., R. Sablinskas, J. Simkevicius and J. WaSniewski (1996). Load balancing problem for parallel com­
puters with distributed memory.lnformatica, 7(3),281-294.

De Doncker, E., and J. Kapenga (1992). Parallel cubature on loosely coupled systems. In: T.O. Espelid and
A. Genz (Eds.), Numerical Integration, Kluwer Academic Publishers, Dordrecht, Netherlands. pp. 317-327.

Freeman, T.L., and C. Phillips (1991). Parallel Numerical Algorithms. Prentice Hall, New York, London,
Toronto, Sydney, Tokyo, Singapoore.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam (1993). PVM: Parallel Virtual
Machine. The MIT Press, Cambridge, Massachusetts, London.

Genz, A.C., and A.A. Malik (1980). Remarks on algorithm 006: an adaptive algorithm for numerical integration
over an N-dimensional rectangular region. 1 Comput. Appl. Math., 6, 295-302.

Genz, A.C. (1982). Numerical multiple integration on parallel computers. Comput. Phys. Comm., 26, 349-352.
Genz, A.C. (1990). Subregion adaptive algorithms for mUltiple integrals. Contemporary Math., 115,23-31.
Gladwell, I. (1987). Vectorisation of one dimensional quadrature codes. In G. Fairweather and P.M. Keast

(Eds.), Numerical Integration, Recent Developments. Software and Applications, NATO ASI Series, Vol.
C203. D. Reidel, Dordrecht, Netherlands. pp. 230-238.

Johnson, L.W., and RD. Riess (1982). NumericqlAnaiysis. Addison-Wesley, Reading, MA,.2nd ed;
Lapenga, M., and A. D' Alessio (1993). A scalable parallel algorithm for the adapti~e multidimension;U quadra­

ture.ln RP. Sinovec, D.E Keyes, M.R Leuze, L.RPetzold and D.A. Reed (Eds.), Pmceedings o/Sixth SIAM
Conference on Parallel Pmcessing. SIAM, Phyladelphia, PA. PR. 933-936.

Stroud, A.H. (1971). Appmximate calculation of multiple integrals. Prentice Hall, Englewood Cliffs, New Jer­
sey.

140 R. Ciegis et at.

R. Ciegis has graduated from the Vilnius University (Faculty of Mathematics) in 1982,

received the Degree of Doctor of-Physical and Mathematical Sciences from the Institute

of Mathematics of Byelorussian Academy of Sciences in 1985 and the Degree of Ha­

bil. Doctor of Mathematics from the Institute of Mathematics and Informatics, Vilnius
in 1993. He is a senior researcher at the Numerical Analysis Department, Institute of
Mathematics and Informatics. R. Ciegis is also a Professor at the Kaunas Vytautas Mag­

nus University and a Professor and a head of Mathematical Modelling Department of
Vilnius Technical University. His research interests include numerical methods for non­
linear PDE, parallel numerical methods and numeriCal modelling in physics, biophysics,
ecology.

R. Sablinskas was born in 1971. After having received his master's degree in VMU he
has been admited as an engineer in telecommunications company Omnitel. In 1995 he
has been admited as a PhD student in Kaunas Vytautas Magnus University. His research

interest covers distributed and parallel' computing, optimization, neural network models.

J. Wasniewski is a senior researcher at the Danish Computer Center for Research and

Education. He has the Degree of Doctor of Mathematics. His scientific interests include
parallel computing, mathematical modelling in ecology.

Skaitinio integravimo algoritmai lygiagretiesiems kompiuteriams su
paskirstyta atmintimi

Raimondas CIEGIS, Ramiinas SABLINSKAS, Jerzy WASNIEWSKI

Siame darbe nagrinejami skaitiniai adaptyviis integravimo algoritmai daugiamaciams integra­
lams skaiciuoti. Sie algoritmai yra skirti lygiagretiesiems kompiuteriams su paskirstyt!\ia atmintimi
arba virtuaIiesiems lygiagretiesiems kompiuteriams, sudarytiems is grupes kompiuterini4 stoci4.
Skaiciavimuose naudotos PVM ir MPI bibIiotekos. IStirti duomen4 perdavimo laiko minimizavimo
ir tolygaus skaiciavim4 pasiskirstymo tarp procesori4 uZdaviniai. Nagrinejami statinis ir dinaminis
duomen4 paskirstymo tipai. Pateikti skaiciavimo eksperimento rezultatai.

