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Abstract. The more realistic neural soma and synaptic nonlinear relations and an alternative mean
field theory (MFT) approach relevant for strongly interconnected systems as a cortical matter are
considered. The general procedure of averaging the quenched random states in the fully-connected
networks for MFT, as usually, is based on the Boltzmann Machine learning. But this approach
requires an unrealistically large number of samples to provide a reliable performance. We suppose
an alternative MFT with deterministic features instead of stochastic nature of searching a solution a
set of large number equations. Of course, this alternative theory will not be strictly valid for infinite
number of elements. Another property of generalization is an inclusion of the additional member
in the effective Hamiltonian allowing to improve the stochastic hill-climbing search of the solution
not dropping into local minima of the energy function. Especially, we pay attention to increasing
of neural networks retrieval capability transforming the replica-symmetry model by including of
different nonlinear elements. Some results of numerical modeling as well as the wide discussion of
neural systems storage capacity are presented.
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1. Introduction

The nonlinearities in the nature especially in the biology or neuroanatomy as well as
in artificial technical systems and even social life play a marked role in the behavior ei-
ther small separate particles or large-scale, massive, strongly interconnected systems. The
neuroanatomy systems included the central nervous system with massive huge intercon-
nected neural networks (NN) a cerebral cortex matter are belong to last ones.

In this paper, we would like to pay an attention to increasing of NN retrieval capability,
narrowing the domain of stability and try to transform the replica – symmetry method
based on including of different neural components with nonlinearities.

A question of neural networks storage capacity is old and it appears since the NN were
first studied theoretically. The Hopfield (1982) was a pioneer of study of the capacity for
random patterns and he established that amount of stories patternsp = αN , whereN is
the number of neurons,α = αc = 0.14 at the temperatureT = 0, but it decreases rapidly
whenp > αcN . However Weisbuch (Weisbuch and Fogelman–Soulie, 1985) have proved
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that local stable patterns are existed only ifp < N/2 lnN , i.e., more less thanαc = 0.14.
If patterns are very correlated each with high magnetization close to one, the storage
capacity reachesN2/(ln N)2 (Wilshaw and Loguest-Higgens, 1970). For this case at the
random situation, the maximum storage patterns is2N as Cover (1985) established. For
linear independent patterns in the pseudo-inverse case (Kohonen, 1984), Kanter capacity
limits to N patterns.

An influence of nonlinearities to the formation different kinds of metastable states,
retrieval, spin-glass, and mixture ones has been analyzed by Sompolinsky (1986). He
emphasized that nonlinearity of the learning algorithm affects only weekly the retrieval
of patterns at smallα. Here the effect of diluted synapses and external noise have been
evaluated. In another work (Matus and Perez, 1990), the state dependance of synaptic
strengths expressed by squared, polynomial function was analyzed and shown by com-
putational experiments, that the number of spurious states is reduced and the stability of
retrieval states has been improved. But in both of last works, the nonlinearities were not
realistic, artificially idealized ones.

Thus, in this paper we will lead to the more realistic neuronal soma and synaptic
nonlinear relations and build an alternative mean field theory (MFT) approach relevant
for strongly interconnected systems as a cortical matter.

The MFT approach we propose is based on analytical presentation of a state depen-
dent Boltzman distribution and partition functions represented by correspond manipulate
the summations as a MFT approximation and inclusion of the effective energy function
that has a smoother landscape due to the extra terms.

2. Nonlinear Relations of ANN Components

2.1. Synapse Nonlinearities

The main sub-system of the brain cerebral cortex matter is the synapse–dendrite–soma–
axon chain. Experiments demonstrate that all compose elements of the chain are char-
acterized by nonlinearities ones of them are strong nonlinear as neuron cells other as a
synaptic excitatory receptors or inhibitory ones are weakly one. The synapses both ex-
citatory and inhibitory typically operate by changing the conductance of postsynaptic
membrane openning ion channels. The time course of the synaptic conductance changes
and in consequence the electrical current changes are different and depends on type of
synapses. For fast excitatory (non-NMDA) and inhibitory (GABAa), the synapses oper-
ate with 1ms and peak conductance on the other of 1nS. The conductance is up 10 times
larger than the slow excitatory (NMDA) and inhibitory (GABAb) with a time scale of
10–100ms. An influence of the synaptic nonlinearities to the dynamic processes in the
neuron are wide represented in (Segevet al., 1989; Rall and Shepherd, 1968; Jacket
al., 1975) or by neuron modeling software engineering Heines and Carveline from Duke
University, Hogkin–Huxley (HH) (Hogkin and Huxley, 1939) modeling and so on. We
use the static current-voltage relation of NMDA (Foster and Fagg, 1984; Mayeret al.,
1980) which common view is shown in Fig. 1.
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Fig. 1. The current-voltage relation of the synaptic receptor of NMDA.

There is the domain where the slope is of negative conductance. For our theoretical
investigations we use the polynomial approximation example of Sompolinsky (Hopfield,
1982) as follows

I(V ) = kV + λ(V 2 − 1), (1)

wherek andλ are constants,V is the excitatory or inhibitory potentials expressed by
voltage.

If one follows to the Hebb rule (Hebb, 1949) which results from the conjunctive pres-
ence of presynaptic firing or activation and postsynaptic one, one might be taken the
change of the synaptic weight

δwij = aSiSj , (2)

wherea is learning rate,Si is presynaptic rate (activation) from the axon of theith neuron
output, andSj is the postsynaptic rate (activation) for the synapse in the dendrite of the
jth neuron output. The learning rule (2) is biologically plausible because it expresses
the hypothesis that the simultaneous presence both presynaptic and postsynaptic activity
increments the synaptic strength.

2.2. Dendrite Nonlinearities

The dendrites are unique treelike structures that type depends on neuron predetermi-
nation: pyramidal, amacrine, stellate, Purkinje, etc. They are also the largest composed
component of the brain. The endritic tree is the place where information is updated and
delivered to the cell body of neuron or through dendro-dendritic interactions to the neigh-
boring dendrites. The dendritic branches are thin, starting near the soma with a diameter
of a few microns and the diameter decreases to less the one micron in contact place
with axon or other dendrites. On terminals of dendrites are spines. Many types of den-
drites have strong nonlinear voltage dependent channels and play important role in the
neuronal processes (Garliauskas, 1998). Especially we would like to pay an attention to
the dendritic bistability phenomenon. The basis of this phenomenon has the slow inward
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Fig. 2. The current-voltage relation for sodium, potassium and net inward current.

currents which are distributed over dendritic membrane (Schwindt and Crill, 1977; Lli-
nas and Sugimori, 1980). These slow currents experimentally observed in motoneurons,
brain-stem dendrites, Purkinje cells cause a dendritic membrane action bistability when
a steady depolarization persists without the two stable states are formed an appearance of
areas of positive and negative conductance slopes leads to a formation of theN -shaped
current-voltage relation (C-VR).

TheN -shaped current-voltage relation curve (b) (Fig. 2) crosses the abscissaV three
times in the pointsVr, Vu, andVd whereVr is a rest potential,Vu is a potential where
a slope conductance is negative, andVd is a depolarized potential. Latter it was also
established that the slow inward current mediated by calcium ions is the reason for a
existence of stable depolarization in catγ-motoneurons (Fig. 2, curve (b), pointVd).

This was confirmed experimentally by Llinas and Sigumori (1980). They directly
demonstrated that the existence of dendritic stable depolarization depends on the inward
calcium current.

In simplified case theN -shaped C-RV was approximated by broken-line curve (Gut-
man, 1984) or by polynomial approximation (Garliauskas, 1998). Let us take the descrip-
tion from last referred issue expressed by polynomial

g(V ) = V + V 2(V − a)/a(1 − b2), (3)

wherea is the constant (a = 3) and b is a parameter (range is from 0.5 to 0.8), or
simplified forms of a Nagumo’s

g1(V ) = V (V 2 − 1). (4)

The nonlinearities of synapses and dendrites are very important for the storage informa-
tion in the massive fully-connected neural networks.

2.3. Soma Nonlinearities

The neuron cell body (soma) is central part of a neuron which on behalf biochemical
and electrical processes maintenances the life of cell, the main component of the brain.
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The neuron through dendrites and the axon of the soma produces summation of spatial
and temporal electrical signals. The spatial summation collects several weak signals to-
gether converting them into a large one. If the signal after summation overcomes the axon
hillock’s threshold, then the neuron fires and output signal is transmitted along axon to
other neurons. This signal up each terminal button is unaffected. There is the uniformity
of the hillock’s signal in comparing with other processes in the brain as an analogue
device.

Based on experiments on squid giant axon, the classical formalization of Hodgkin–
Huxley (Hogkin and Huxley, 1939; Hodgkin and Katz, 1949) through background of
ionic currents and through sodium and potassium conductance changes, and generation
of periodic spiking activity (class 1.2) do not answer to the question how is formed the
all-or nothing threshold effect function into cell body (hillock).

Though the all-or-nothing threshold affect of neuron was experimentally confirmed
almost a hundred years ago but theoretical modeling results were represented in (Jacket
al., 1975; Garliauskas, 1998), where the minimum threshold value of voltage was calcu-
lated or modeled in dynamics.

2.4. Axon Nonlinearities

The axon, that conducts the neuron’s output signals to the goal cells, is very specialized
component of CNS. It can contact with ten thousand other neurons in the cortical sys-
tem. If the information in the cell bodies and the dendritic trees is integrated, in contrast
the axons serve only to transit signals from cell body to other neurons over synapses and
dendrites. Axonal signal propagation delay slows down neural communication conditions
and influences to possible computational modeling characteristics. The modeling is pre-
determined by classical Hodgkin–Huxlay model (Hogkin and Huxley, 1939) and clear
demonstrated by Koch and Bernander (Kochet al., 1983).

Most authors confirm that axon posses the uniformity of electrical behavior making
sure that whatever pulse train is put into one end of the axon is readily propagated to
the terminal of other neuron. The pulses of action potentials or spikes originate at the
axon hillock propagate along axon of neuron in constant velocity and amplitude. The
axon represents a radial symmetry, i.e., radial current is neglected, and characterizes an
active strong nonlinear axon. In active axon, the membrane is presented with a negative
resistance relation changed in time and along axon as a cable.

3. Alternative Mean Field Theory

3.1. Prepositions to Mean Field Theory on NN

Different peculiarities and phenomena of artificial neural networks were analyzed in
the early of the first issues contributed by Little (1978), Hopfield (1982), and Peretto
(1984). All ideas in these previous works and the latter (Amitet al., 1985a; Amitet al.,
1985b; Gardner, 1986) are turning around an interaction of Spin Glass and ferromagnetic
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macrostates, and the storage capacity of memorized or embedded patterns in the certain
configured network. There were also analyzed the stable and metastable states, the first
and the second – order phase transition, the2p degenerated ground states, Mattis states,
replica – symmetry breaking and many others fundamental thermodynamic properties of
the Ising model.

I have done in introduction the short review of published works on the problem of
the neural network capacity to retrieve the memorized states, on which in the first time
spoke Hopfield (1982) considering a general content – addressable memory. The Hopfield
model some times called zero-temperature model uses random sequential updating. The
dynamics of the Hopfield model is completely asynchronous, where the discrete step of
time tight coexists with the refractory period. The Little model is also supported by a
discrete principle of the dynamical updating though it is synchronous one, because at the
each time step all neuron states update simultaneously.

Hopfield (1982), Amit (Amitet al., 1985a; Amitet al., 1985b), Gardner (Gardner,
1986; Gardner and Derrida, 1988), Buhmann (1989) have paid not a few attention to
storage capacity of the full-connected neural ensembles. Especially, the study of Som-
polinsky in his analytical issue (Sompolinsky, 1986) estimates the different presumptions
to an influence of nonlinear updating of synapses and a static noise. His affirmation, that
a presence of synaptic nonlinearities positive influence to retrieval capabilities, requires
an essential foundation based upon consideration of concrete nonlinear characteristics of
main components of neural networks. We are going to fill this blank niche of the research
even though a little bit.

Another question, that is close to representation of synapse nonlinearities, is con-
nected with an absence or presence synapses at all. On real biological neural networks
not all neurons are connected to all others. One neuron is maximum bounded to ap-
proximately104 neurons of all neurons to be1010. Taking an attention to this fact, the
new problem of consideration the asymmetry (dilution) of connections is arisen. The
asymmetric diluted neural networks in dynamics have been considered by authors Som-
polinsky (1986), Gardner and Derrida (1988), Choi (1990). The effect of influence of the
dilution to the capacityαc and the overlapmc for the retrieval states is inversely propor-
tional to dilution parameter of synapses: The more concentration of survived synapses
the more critical memory capacity (Sompolinsky, 1986).

The influence of noise (static Gaussian) embedded to synapse strength to the memory
capacity has been examined by Weisbuch and Fogel–Solie (1985), McEliceeet al. (1987),
and Sompolinsky (1986). The conclusion is one a noise influences to the memory capacity
positively but it has either severe bounded conditions. Almost all information can be
retrieved without loss if a level of the noise is less than12 ln N , i.e., the noise must be
η2 � 1. The correct retrieval information is achieved when a noise vector is far from
limits 1 and−1. It is very strong condition.

3.2. Alternative Mean Field Theory

In statistical physics no other way than an averaging over any randomness of the ob-
servable physical particles. For the solution of thermodynamic problems there were two
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possible cases. The first is to average the free energy, the second is to define the parti-
tion function. As usually, ones use a free-energy average by transformation into a par-
tition function average. In statistical mechanics, this method has been in the first used
by Kac (Kac and Lin, 1970), and later by Grinstein (Grinstein and Lather, 1976), Emery
(1975). For the ferromagnetism, in its interpretation to the neurophysiology disordered
fully connected systems, applying the replica procedure to the infinite Ising model, the
latter method has been first used by Kirkpatrick and Sherrington (1978). Further more,
this method has been widely disseminated among the most theoretic scientists, for exam-
ple, Amit (Amit et al., 1985b), Gardner (1986), Sompolinsky (1986), and many others.
The theory based upon these procedures is named the mean field theory.

The general procedure of averaging of the quenched random states in the fully con-
nected networks for MFT, as usually, is based on the Boltzmann Machine learning. But
this approach requires an unrealistically large number of sweeps (samples) to provide a
reliable performance. We suppose an alternative MFT with instead of stochastic nature of
search a solution a set of large number equations with deterministic features. Of course,
this alternative theory will not be strictly valid for infinite number of elements. It will be
approximate as well as BM too.

3.3. Analytical Presentation of Alternative MFT

Starting the formulation an alternative MFT we consider the origin presumptions of the
fully connected neural network. The networks with symmetric couplings were studied in
early works of Little, Hopfield, Amit and as it was shown the system of states in dynamics
converges to local minimum which is the solution of global energy function. The solution
remains absolutely stable. The state configuration of this minimum endows the network
with abilities to the embedded memory. The symmetric approximation of the real neu-
ral networks possesses the limited properties. They lack reproduce the natural chaotic
properties (Garliauskas, 2003), temporal associations (Kanter and Sompolinsky, 1987)
though the many phenomena such as associative memory, collective computation, fault
tolerance, influence of nose and damage of composed elements to storage capacity and
others have been successfully performed. But it needs to note that the biological neural
networks only in the sense of the synaptic couplings are endowed with a high degree of
asymmetry. As it is shown by Garliauskas (2003) in this case the chaos phenomenon was
successfully opened through the studies of Amitet al. (1985) have shown that the adding
the some asymmetry by the dilution of couplings as an internal noise does not increase
significantly the capacity to memorizing or retrieving of information.

We consider a neural network consisting abstracted neurons, states of which form the
configurations{Si}N

0 = S, whereN is a number of neurons, and the states starting from
initial So relax to local minima of the energy function

E(S) = −1
2

N∑
i,j=0

WijSiSj , (5)

whereWij are the strengths of synaptic couplings betweeni andj neurons.
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The step function updating rule

Si =
{

+1 if
∑N

j=1 WijSj� h,
−1 otherwise,

(6)

has been accepted. Here theh is a threshold value of neurons.
Allowing the randomness of synapse strengths through matrix|W| we resort to statis-

tical updating methodology of network states for the learning processes. Then the proba-
bility of state configurationS at a temperatureT will be given by the Boltzmann distri-
bution

P (S) = e−E(S)/T , (7)

or by the average of a state dependent functionf(S) by the Gibbs distribution

< f(S) >=
1
Z

∑
S

f(S)e−E(S)/T , (8)

whereZ is the partition function

Z =
∑
S

e−E(S)/T .

As usually, the standard updating procedure to compute< f(S) > is the Monte–Carlo
sampling technique or simulated annealing with likelihood of uphill moves providing for
search of global minimum ofE(S). Other simulation techniques lead only for finding
local minimum ofE(S) since then theT -dependence disappears does not take part in the
modeling.

Now we define and apply an alternative mean field theory, which maybe called as a
MFT approximation? The nondeterministic nature into the statistical systems we replace
by a system of deterministic equations.

Let us proceed some analytic transformations by the Dirrac-function and the integra-
tion technique by small rectangular pulse calculation.

In the first step, let us formulate theory for one neuron with two-state{Si}1
−1 = S

situation. The average

∑
S=±1

f(S) =
∑

S=±1

∞∫
−∞

dV f(V )δ(S − V ). (9)

The normalδ-function in the complex plane

δ(S − V ) =
1

2πi

i∞∫
−i∞

dUe(S−V )U . (10)
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Substituting (10) to (9), one gets

∑
S=±1

f(S) =
1

2πi

∑
S=±1

∞∫
−∞

dV

i∞∫
−i∞

dUf(V )e(S−V )U . (11)

After some simple mathematical transformations the equality (11) becomes

∑
S=±1

f(S) =
1
πi

∞∫
−∞

dV

i∞∫
−i∞

dUf(V )e−UV +ln(cosh U). (12)

In general case forN neuron statesSi usingf(S) = exp(−E(S)/T ), we obtainZ

as follows

Z =
∑
S

e−E(S)/T =
∑

S1=±1

∑
S2=±1

· · ·
∑

SN=±1

e−E(S)/T

=
1
πi

Πj

∞∫
−∞

dVj

i∞∫
−i∞

dUje
−[(E(Vj)/T )+

∑N

j=1
(−UjVj+ln(cosh Uj)]. (13)

Under realization of multiplication the degree of the exponent in the last under integrating
expression and returning to indexi the effective energy becomes

E(V,U) = E(V)/T +
N∑

i=1

[
UiVi − ln(cosh Ui)

]
. (14)

It is necessary to note that the effective energy function differs from the effective
Hamiltonian function (Peretto, 1984) by presence of additional memberE(V), which
helps us to have a smoother surface than simpleE(S) leading to the smaller probability
to stuck into local minimum.

The mean field variablesUi andVi are determined by the saddle-point equations

∂E(V,U)
∂Ui

= 0,
∂E(V,U)

∂Vi
= 0. (15)

They after definition of the partial derivatives, we obtain the system of equations as
follows

Vi − tanh Ui = 0, (16)
1
T

∂E(V)
∂Vi

+ Ui = 0. (17)

BecauseUi for neural network coincides with sum of firing potentials from allj-side
neurons, the neuron state variables will be represented according to (17) by the following
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equations

Si = tanh
(∑

j

WijSj/T

)
. (18)

The way of solution of Eqs. 16–18 we discuss in the next section.

4. Modeling Results of Memory Capacity Evaluation

Dynamic associative memory capacity is a measure of the ability of neural networks to
store a set of binary patterns and at the same time be capable of associative recall those
patterns. Another capacity measure, known as relative capacity, has been proposed which
is an upper bound of memory capacity. It has been shown (Amari and Maginu, 1988;
Amari and Yanai, 1993; Hopfield, 1982; Amitet al., 1985b) that patterns are remembered
approximately (i.e., no perfect retrieval is allowed), and then must not exceed 0.14. This
value is the relative capacity. Another result on the capacity of this memory for the case
of error-free memory recall by one-pass parallel convergence is given by the absolute
capacity (Weisbuch and Fogelman–Soulie, 1985; McElieceet al., 1987). On the other
hand, if all memorized configurations are required to be in equilibrium with a probability
close to 1, say 0.99, then an upper bound on can be derived by requiring that all bits of
all configurations be retrievable with less than a 1 percent error. Noting that this stringent
error correction requirement necessitates small values.

In order that error-free one-pass retrieval of a fundamental memory from random key
patterns laying inside the Hamming hypersphere of radius is achieved with probability
approaching 1. Here, it defines the radius of attraction of a fundamental memory.

Amari and Maginu (1988) (also Amari and Yanai (1993)) have analyzed the transient
dynamic behavior of memory recall under the assumption of a normally distributed with
mean zero. The variance was calculated by taking the direct correlation up to two steps
between the bits of the stored memories and those given one. Under these assumptions,
the relative capacity was found to be equal to 0.16. This theoretical value is in good
agreement with early simulations reported by Hopfield (1982) and with the theoretical
value of 0.14 reported by Amitet al. (1985) using a method known as the replica method.

In other words, they showed that each of the fundamental memories is an attractor
with a basin of attraction surrounding it. They also showed that once initialized inside
one of these basins of attraction, the state converges to the basin’s attractor in order
ln(lnN). We have simulated an example of Eqs. 15–17 and the results as asymptotic
solution moving to global attractor is shown in Fig. 3.

The radius of the basin of attraction becomes asymptotically smaller. It depends on
nonlinearities.
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Fig. 3. The asymptotic solution of the basin of attractor in the phase space. The initial conditionsV1 = 0;−1; 1

were taken for equations (15), (16).

We checked up some theoretical foundations of the recent works. According to (Amit
et al., 1985, formula (9)) we reconstructed an error function as follows

Err = erf(m, r, α) = erf
[ m

(2rα)1/2

]
=

2
π1/2

m∫
0

e−[ m2
2rα ]d t, (19)

wheret = m
(2rα)1/2 , m is a magnetization,r = p − s is the rest patterns overs, where

s remains finite as a common quality of neurons atN → ∞. Letting r = 1 we have
calculated the error function versus parametert andα = p/N at temperatureT = 0. The
family of curves are presented in Fig. 4 when theα decreases, the error decreases too.

The range of changesα has been taken up to the critical valueα < αc. At α → 0 Eq,
(18) asymptotically tends to

E′rr =
Ne

N
100% = 102

( 1
2πα

)1/2

exp(−1/2α) (20)

remainingm on the level0.985. TheNe is an average number of errors. The approxima-
tion (19) good coincides with the estimate of Hopfield (1982) up to valuesE′rr ∼= 1.8
andα = 0.12, but further two curves divergate. The Fig. 5a and display on an expanded
scale in the insert Fig. 5b shows two domains of the match. The error is essential.

Returning to Fig. 4, forα � αc, and corresponding temperatureT > Tc there is a
competition between entropy effects ( there are much more configurations atm = 0) and
energy effects, when at lowT the spins tend to minimum energy at non zerom. Below
and upper critical temperature the behavior of the neural network is characterized by that:

ForT < Tc, m = ±m(T ). ForT > Tc, m = 0
Below Tc one observes a macroscopic magnetization. The probability distribution

P (m) has two peaks atm = ±m(T ), where the widths of the peaks decrease asN−1/2
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Fig. 4. The error versus parametert and values ofα. The discrete values are marked: diamonds – 0.01, boxes –
0.05, circles – 0.1, crosses – 0.12, and line – 0.14.

Fig. 5. The error versusα. The dotted line is estimates of Hopfield (1982), the solid line was calculated on the
formula (18). a) is main and b) expanded scale displays.

in the thermodynamic limit,N → ∞. The value ofP (m) outside the peaks is quite
small (e.g.P (0) ∼ exp(−CN2/3)). The main states±m(T ) are so called pure states.
Mathematically these states are Boltzmann probability measures on the space of all con-
figurations.

Further we suppose that output potentials of neighbor neuronsj to the base neuron
i are nonlinear transformed twice in the synapse action and in the neuroni. The first is
presented by Eq. 1 and pointed by the curve with crosses (Fig. 6a), the second one is
presented by Eq. 4 and pointed by curve with circles. The resulting data after inserting
Eq. 1 to the Eq. 4 are shown by the complex dependence (Fig. 6a, line curve) including
two straight forwarded ranges and the oscillation range near zero of coordinates.

The surface in the 3D space showing dependence on potential and temperatureT is
presented in the Fig. 6b. Such dependence will be included in the further modeling.
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Fig. 6. The nonlinear characteristics of the neural network units. In the a), the cross curve marks the synaptic
relation, the circle curve –N -shaped relation (4), and the solid curve – the complex dependence of joint action
of two nonlinearities. In the b), the surface of state potentials and temperature mature action without restriction
is shown.

Based on Eqs. 16–18 and the Hebb weight-pattern law

Wij =
1
N

p∑
µ′=1

ζµ′

i ζµ′

j , (21)

whereζµ
i , ζµ

j are thei andj patterns, the overlap of staeSi with µth pattern is expressed

ζµ
i Si = ζµ

i tanh
(

1
T

p∑
µ′=1

N∑
j=1

ζµ′

i ζµ′

j Sj

)
(22)

or includingmµ′
= 1/N

∑N
j=1 ζµ′

j Sj) the microscopic overlap

mµ
i = ζµ

i tanh
(

1
T

p∑
µ′=1

ζµ′

i mµ′
)

. (23)

Summing overµ andi and dividing byp andN the macroscopic overlap was got as
follows

m = 1/p

p∑
µ=1

1/N

N∑
j=1

ζµ
i tanh

(
1
T

p∑
µ′=1

ζµ′

i mµ′
)

. (24)

Then the error in percents will be taken

Err = 102(1 − m)%. (25)



172 A. Garliauskas

The modeling was carried out by representing input data matricesA[i, j] as a state
matrix andB[i, p] as a pattern matrix. Herei = [1, N1], j = [1, N2], andp = [1, p1]
are taken of these upper ranges. The elements of matrices were taken randomly. Then the
averagedm is represented according to (18) and (24) by such equality

m = 1/p

p1∑
µ=1

1/N1

N1∑
i=1

B[i, p] tanh
(

1
TN2

N2∑
j=1

WijSj

)
. (26)

Now weWij as a synaptic strength considered in the cases:

(a) linear whenWij = kA[i, j], wherek is the constant general strength for all neu-
rons,

(b) nonlinear case whenWij was expressed by current according to the current-voltage
relation (1),

(c) double nonlinear case when the synaptic strength was taken as in item (b) and
instead of the sigmoid function of neurons was taken strongly nonlinear Nagumo’s
relation (4).

The results of the numerical modeling are presented in Fig. 7a and b. The Fig. 7a
shows that in the linear case (a) the error values are higher than in the nonlinear case (b). It
means that expected memory capacity is higher in nonlinear presentation of the modeling
preposition. Including double nonlinearities based onN -shaped relations of neurons the
results are more surprised. As the minimum of curve in the Fig. 7b indicates atp = 3,
T = 0.4, andN = 20 that the value of the error is essentially lower than in two upper
cases. Thus, nonlinearities of the functional presentation of the neural networks provide
a narrower range (as in (Sompolinsky, 1986) it was noticed) of changes of characteristics
and more expressed a basin of the attraction in the neuron state configuration space.

Fig. 7. The error versus number of stored patterns. In the a), the upper curve marks the results of linear case and
the lower – nonlinear case. In the b), the error curve in the case of strong nonlinearties is shown.
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5. Conclusions

The proposed alternative mean field theory model generalizes the process of averaging
over random observable elements of fully connected artificial neural networks by a large
number of equations with deterministic features. The simulation by this model can take
an advantage in a parallel processor updating. Another property of generalization is an
inclusion of the additional member in the effective Hamiltonian allowing to improve the
stochastic hill-climbing search of the solution not dropping into local minimum of the en-
ergy function. Especially, we pay an attention to increasing of neural networks retrieval
capability transforming the replica-symmetry model by including different nonlinear el-
ements. The study of Sompolinsky in his analytical paper (Sompolinsky, 1986) estimates
the different presumptions to an influence of nonlinear updating of synapses and a static
noise. His affirmation, that a presence of synaptic nonlinearities positive influence to re-
trieval capabilities, requires an essential

foundation based upon consideration of concrete nonlinear characteristics of main
components of neural networks. We have got some modeling results confirming this the-
sis. In the research in progress, the stability problems and the massive-parallel modeling
of stochastic averaging process with nonlinearities of neural network components and
noises are planning for realization.
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Netiesiškum ↪u ↪itaka neurotinklo atminties imlumui

Algis GARLIAUSKAS

Nagriṅejama neurotinklo element↪u netiesini↪u charakteristik↪u ↪itaka tinklo atminties imlumui.
Pasīulytas vidutinio lauko teorijos deterministinis sprendimo būdas. Didelis ḋemesys atkreiptas
neurotinklo atsiminimo geḃejimo tyrimui, priklausomai nuo tinklo element↪u netiesiškumo. Pateikti
ir išnagriṅeti skaitinio modeliavimo rezultatai.


