
INFORMATICA, 2005, Vol. 16, No. 2, 241–260 241
 2005Institute of Mathematics and Informatics, Vilnius

Transcoding Aspects for Image Tele-Collaboration

Sabah M.A. MOHAMMED, Jinan A.W. FIAIDHI
Department of Computer Science, Advanced Technology and Academic Centre
Lakehead University
955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
e-mail: {sabah.mohammed, jinan.fiaidhi}@lakeheadu.ca

Received: September 2004

Abstract. Tele-Collaboration will enable users in different locations to collaborate in a shared,
simulated environment as if they were in the same physical room. It’s the ultimate synthesis of
networking and media technologies to enhance collaborative environments. When participants are
Tele-Collaborated, they are able to interact with each other in a shared virtual environment. They
are able to query and visualize data stores and steer complex scientific and engineering simula-
tions. This article investigated the transcoding intermediaries required to achieve an effective tele-
collaboration on the Web as well as on P2P/Grid environments. Both Scene Graphs as used by the
virtual SceneBeans and the SVG DOM tree are found to be essential for the transcoding purpose.

Key words: image trascoding, P2P and grid environments, scene beans, scene graphs, SVG, DOM.

1. Collaboration Intermediaries

Peer-to-peer (P2P) and Grid technologies have recently renewed interest in decentrali-
zed systems. Although the Internet itself is the largest decentralized computer system in
the world, most systems have employed a completely centralized topology in the 1990s
through the massive growth of the Web. With the emergence of P2P in early 2000, the
model has swung into radically decentralized architectures such as Gnutella. The P2P
style interaction model facilitates sophisticated resource sharing environments between
“consenting” peers over the “edges” of the Internet. Resources shared could be anything
from CPU cycles, exemplified by SETI@home (extraterrestrial life) and Folding@home
(protein folding), to files (Napster and Gnutella). In addition, grid computing provides
consistent, inexpensive access to computational resources regardless of their physical lo-
cation or access point. As such, The Grid provides a single, unified resource for solving
large-scale compute and data intensive computing applications. P2P and Grid environ-
ments allow people to use mobile carts, handheld PCs, 3G Mobile Phones, PocketPCs,
PDAs, Supercomputers, and Computer Networks anywhere, anytime to access seamlessly
all of media existing on a particular system or the internet. Peer “interactions” involves
advertising resources, search and subsequent discovery of resources, requests for access
to these resources, responses to these requests and exchange of messages between peers.
Indeed with the rapid increase in the amount of content on the World Wide Web and
vast amount of peer grids, it is now becoming clear that information cannot always be

242 S.M.A. Mohammed, J.A.W. Fiaidhi

stored in a form that anticipates all of its possible uses. Intermediaries becomes a ne-
cessity as a computational elements that convert data, on demand, from one form into
another between different peers. Since peers interactions, in most P2P and Grid systems
as well as on many clients on the Web, are XML-based, applications could be written
in any language and can be compiled for any platform through various web intermedi-
aries (WBI). The advent of such intermediaries is to integrate the ubiquitous information
infrastructures. The new web intermediaries have larger role than the traditional client-
server intermediaries and often termed as “Cybermediaries” (Sarkaret al., 2003). Like
the client-side design, intermediary web-based programming requires no “permission”
from the Web server to creates additional functionality for the user when the data pro-
ducer (e.g., server or database) or the data consumer (e.g., browser) cannot be modified.
Note that it is not necessary that there is only one intermediary between the client and the
service provider as it is possible to combine intermediaries in several ways.

Web Intermediaries (WBI, pronounced “webby”) is an architecture and framework
for the uniform creation and control of intermediary programs such as proxy servers,
transcoding processors, and any kind of program that sits somewhere between two end
points in a network. Network intermediaries are computational elements that lie along the
path of networked interactions. Some intermediaries are generic, and are used by many
different applications, while others serve some very specific purposes. Thus intermedi-
aries are “smart pipes” that can monitor, edit, and generate content that flows between a
user and a content provider. The term “intermediary” was coined by the IBM WBI de-
velopment team (Barrett and Maglio, 2000). Fig. 1 illustrates the general architecture of
web intermediaries (Fictcher and Waterhouse, 2002).

It must have the basic “Web Services Stack” which will allow it to seamlessly plug-
in to the Web Services invocation route. The “Core Functionality” component is the
main functionality of the Web Service. This could itself be a J2EE/J2ME Application,
a CORBA based application, or .NET component. Similar to Web Services, it should not

Fig. 1. The main components of a web intermediary.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 243

matter what the platform is or what programming language was used to create this func-
tionality. The “Rules” component can serve to define the behaviour of the Intermediary;
how it interacts with different clients, its interaction with other Intermediaries, etc. The
“Log” database holds all the information on the messages passing to and from the Inter-
mediary. Finally the “Repository” can be used not only for its core functionality but also
as a source of information about other Intermediaries that it needs to interact with. The
brokering protocol can be a simple SOAP over http or more sophisticated protocol like
JXTA message piping protocol.

In this paper, we are investigating the intermediary-based image transcoding ap-
proaches suitable for peers collaborations and present an investigation on suitable pro-
tocols protocol for achieving it within P2P/Grid and Web environments.

2. Transcoders as Intermediaries

P2P and Grid technology shifted the trend toward a common Java and XML infrastruc-
ture for Internet servers. On the client side, the trend is to have a wide range of clients
oriented toward specific purposes, such as smart cards, personal digital assistants, smart
telephones, set-top boxes, and smart automobiles. The usefulness of these new clients
increases greatly when they have a wide range of content available to them, and this
content is often provided by Internet servers. Since many of these new clients are mo-
bile and wireless connectivity as well as the ability to support disconnected operation
are important to them. Indeed, different devices require pages to be presented in differ-
ent markup languages, such as Hypertext Markup Language (HTML), compact HTML
4, Handheld Devices Markup Language (HDML), Wireless Markup Language (WML)
and VoiceXML. Even with a particular markup language such as WML, different presen-
tations may be required on different devices. For example, for one WML-based phone,
choices are most appropriately presented as buttons. For another phone, they might best
be presented as hyperlinks. Indeed, these diverse clients have differing requirements for
communicating and presenting data. When attached to Web servers, the best approach
for working with these clients is to provide an easy means of translation and tailoring of
data to meet specific client needs, a job that is easily handled by XML andtranscoding
technologies. Actually by making the legacy data available via XML-based Web services,
systems can greatly extend its reach to its diverse customers.

Transcoding technology can circumvent some of the complexities of content adap-
tation. It adapts content to match constraints and preferences associated with specific
environments. It can modify either the content or the rendering associated with an ap-
plication. In other words, both computer users and cell phone users can view content in
a way that suits their devices, without sacrificing the content itself. Thus, transcoding is
vital to pervasive computing because it can bridge the gap from existing Internet Web
implementation to later active and dynamic Internet services architectures.

244 S.M.A. Mohammed, J.A.W. Fiaidhi

2.1. Image Transcoding Technologies

Ubiquitous devices (e.g., GSM Data, HSCSD, GPRS) can use the web based ap-
plications. Such devices may vary considerably from an ordinary laptop PC: dis-
play size, mass storage capacity and CPU processing power. Wireless networks will
also have at 10–100 times less bandwidth and higher latencies than fixed line net-
works. Many proxy services that adapt TCP/IP protocol stack and some service
protocols (like HTTP) have been developed (e.g., IBM Transcodinghttp://www-

4.ibm.com/software/secureway/transcoder/ and IBM WebSphereR©Transco-
ding Publisher Version 4.0 for Multiplatforms). There are also proxies that manipulate
presentation of the content depending on mobile device and mobile network constraints
(e.g., Spyglass Prism,http://www.spyglass.com/solutions/technologies/
prism/details.html and APRO project,http://www.vtt.fi/tte/projects/
apro/). Usually these proxies are statically configured to support single specific devices.
Indeed the ideal approach is to support ubiquity and to adapt dynamically to changes of
user’s network environment and devices. Indeed, the most significant part of any network
performance is spent on Image manipulation. Images represent variety of objects from
visual “landmarks” for navigation to users or images that consist of some valuable in-
formation. So complete image removal for ubiquitous devices isn’t a fruitful approach –
instead several dedicated image manipulation methods can be used to conserve the band-
width within ubiquitous environments (Smithet al., 1998):

• reduction of image depth;
• format modifications (e.g., GIF to JPEG);
• JPEG Q-parameter modification;
• image scaling;
• big image removal;
• removal of tags and elements (e.g., applet and script elements);
• outlining;
• structural changes to presentation format;
• background paging;
• estimation of the transfer cost and cost visualization to the user.

Methods listed above partially solve particular ubiquity problems and a more effec-
tive, dynamic and reusable solution is required. In this direction the Java platforms and
XML are emerging major technologies for performing reusable intermediaries functions.
In the followings are the major trends of such technologies:

1. Continued integration of Java and XML into robust intermediaries.
2. Continued and accelerated standardization of Java and XML technologies for in-

frastructure and industries.
3. Use of transcoding and XML technologies to support a much wider range of clients

of every description, both synchronous and asynchronous.
4. The move from tightly coupled applications to loosely coupled Web services.

There are two major XML based image transcoding technologies that we have sighted
in literature: SVG and Scene Graph. The following two sections describe our investiga-
tion on why we prefer the Scene Graph Image Transcoding.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 245

2.1.1. SVG Image Transcoding
For XML, the bulk of the infrastructure standards work is driven by the ebXML ini-
tiative (http://www.ebxml.org) and by the World Wide Web Consortium (W3C
at http://www.w3c.org). In relation with graphics and images, W3C concentrated
on SVG (Scalable Vector Graphics) initiative. SVG is a language for describing two-
dimensional graphics and graphical applications in XML. SVG 1.1is a W3C Recommen-
dation and forms the core of the current SVG developments. SVG 1.2is the specification
currently being developed. The SVG Mobile Profiles: SVG Basic and SVG Tiny are tar-
geted to resource-limited devices and are part of the 3GPPplatform for third generation
mobile phones. SVG Printis a set of guidelines to produce final-form documents in XML
suitable for archiving and printing. Furthermore, by using an XML syntax, SVG is ex-
tremely easy to generate, search, transform and manipulate. Fig. 2 illustrates an example
of representing a rectangle image in SVG. Unlike other formats, SVG becomes a pow-
erful tool for anybody managing image content for the Web or other environments (see
Fig. 3). By leveraging the force of XML and the visual strengths of dynamic and easily
accessible vector graphics (i.e., SVG), the Apache XML Project’s Batik team extends this
power in building an industrial-grade embeddable Web graphics software solution. Batik
delivers core components for three main purposes:

– generating SVG content from any Java applications,
– viewing SVG content, and

<svg width=”400” height=”450”>
<rect x=”10” y=”20” width=”100” height=”50” style=”fill:red”/>

</svg>

Fig. 2. Representing a rectangle in SVG.

Fig. 3. SVG-based image transcoding.

246 S.M.A. Mohammed, J.A.W. Fiaidhi

– converting SVG to and from other formats.

In order to see how the SVG Generator works, the following example illustrates how
you can create an instance of the SVGGraphics2D and use it as a regular Graphics2D
object to draw graphics. Then, it demonstrates how you can stream out the generated
DOM tree (which is the in-memory representation of the SVG document and the graphics
as well).

import org.apache.batik.dom.GenericDOMImplementation;
import org.w3c.dom.Document;
import org.w3c.dom.DOMImplementation;
public class TestSVGGenerator {

public void paint(Graphics2D g2d) {
g2d.setPaint(Color.red);
g2d.fill(new Rectangle(10, 10, 100, 100));

}
public static void main(String [] args) throws IOException {

// Get a DOMImplementation
DOMImplementation domImpl =

GenericDOMImplementation.getDOMImplementation();
String svgNamespaceURI = ”http://www.w3.org/2000/svg”;

// Create an instance of org.w3c.dom.Document
Document document =

domImpl.createDocument(svgNamespaceURI, ”svg”, null);
// Create an instance of the SVG Generator
SVGGraphics2D svgGenerator = new SVGGraphics2D(document);
// Render into the SVG Graphics2D implementation
TestSVGGenerator test = new TestSVGGenerator();
test.paint(svgGenerator);
// Finally, stream out SVG to the standard output using UTF-8
// character to byte encoding
boolean useCSS = true; // we want to use CSS style attribute
Writer out = new OutputStreamWriter(System.out, ”UTF-8”);
svgGenerator.stream(out, useCSS);

}

}

The Batik toolkit provides a module called Transcoder. One of the main class is the
ImageTranscoder that lets developers convert a SVG document to a raster image such
as PNG or JPG. The ImageTranscoder takes a TranscoderInput and a TranscoderOutput,
which are respectively the input data to transcode and the output into which the resulting
data will be stored. The transcoder supports different types of input such as an Input-
Stream, a Document, or a Reader and different types of output such as an OutputStream,
or a Writer. The following example is using the PNGTranscoder and shows how to trans-
form a SVG document to a PNG image.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 247

import java.io.*;
import org.apache.batik.transcoder.image.PNGTranscoder;
import org.apache.batik.transcoder.TranscoderInput;
import org.apache.batik.transcoder.TranscoderOutput;
// Create a PNG transcoder
PNGTranscoder transcoder = new PNGTranscoder();
// Create the transcoder input
String svgInputURI = ...;
TranscoderInput input = new TranscoderInput(svgInputURI);
// Create the transcoder output
OutputStream ostream = ...;
TranscoderOutput output = new TranscoderOutput(ostream);
// Transform the svg document into a PNG image
transcoder.transcode(input, output);

// Flush and close the stream
ostream.flush();
ostream.close();
For example, to set the encoding quality of a JPG, the following code can be used on a JPEG-

Transcoder:
// Create a JPG transcoder
JPEGTranscoder transcoder = new JPEGTranscoder();
transcoder.addTranscodingHint(JPEGTranscoder.KEY_QUALITY, new Float(.8));

// ...

Or in order to control the size of the image, the following code can be used on any
ImageTranscoder:

// Create an ImageTranscoder
ImageTranscoder transcoder = new ...;

transcoder.addTranscodingHint(ImageTranscoder.KEY_WIDTH, new Integer(100));

Although SVG technology presents an innovative solution in image transcoding, its
syntax remains only rich for 2D graphics. You can certainly model 3D images (see Fig. 4)
but manipulating and interacting with such 3D SVGs requires further tools such as XSLT
or ECMAScript (http://www.el-mundo.es/internet/ecmascript.html) to act
as handlers of DOM events and modify DOM nodes in order to create the effect of a
shifting view in response to user input on the view UI. This is possible since SVG supports
external script files.

As an XML based format, SVG also requires an XML parser to manipulate the DOM
tree. SVG has several benefits as a file format, but for defining content of images espe-
cially in 3D for greater interactivity and tele-collaborative applications appear not prac-
tical. SVG files for such applications tend to grow rather large and their online pars-
ing performance and DOM handling should become an obstacle. However, many trials
have been made to enhance the overall performance of SVG based applications by using
the binary form of SVG (e.g., WBXMLhttp://www.w3.org/TR/wbxml, and Plazmic
http://www.svgopen.org/2002/papers/hayman__suitability_of_svg_for

_wireless_applications/), but as a compiled format of the SVG DOM, it will not
enable collaborating users to change the contents which is a highly important factor in
tele-collaboration.

248 S.M.A. Mohammed, J.A.W. Fiaidhi

<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE svg PUBLIC ”-//W3C//DTD SVG 1.1//EN”
”http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” viewBox=”-600 -600 1200 1200”
xmlns=”http://www.w3.org/2000/svg” version=”1.1”>
<desc>View cube.xml as svg</desc>
<defs>

<marker id=”ArrowHead”
viewBox=”0 0 10 10” refX=”0” refY=”5”
markerUnits=”strokeWidth”
markerWidth=”8” markerHeight=”6”
orient=”auto”>
<path d=”M 0 0 L 10 5 L 0 10 z” />

</marker>
</defs>
<g id=”Background”>

<rect x=”-600” y=”-600” width=”1200” height=”1200”
fill=”#F0F0E0” stroke=”none”/>
</g>
<g id=”CoordinateAxes” transform=”scale(1,-1)”>
<path fill=”none” stroke=”#000000” stroke-width=”1” marker-end=”url(#ArrowHead)”

d=”M 250 200 L 33.93691 -88.695299”/>
<text fill=”red” font-size=”20pt” x=”33.93691” y=”-88.695299”

transform=”translate(33.93691,-88.695299) scale(1,-1) translate(-33.93691,88.695299)”>x</text>
<path fill=”none” stroke=”#000000” stroke-width=”1” marker-end=”url(#ArrowHead)”

d=”M 250 200 L 466.06308 142.26094”/>
<text fill=”red” font-size=”20pt” x=”466.06308” y=”142.26094”

transform=”translate(466.06308,142.26094) scale(1,-1) translate(-466.06308,-142.26094)”>y</text>
<path fill=”none” stroke=”#000000” stroke-width=”1” marker-end=”url(#ArrowHead)”

d=”M 250 200 L 33.93691 430.95624”/>
<text fill=”red” font-size=”20pt” x=”33.93691” y=”430.95624”

transform=”translate(33.93691,430.95624) scale(1,-1) translate(-33.93691,-430.95624)”>z</text>
</g>
<g id=”ThreeDimensionalShape” transform=”scale(1,-1)”>

<polygon fill=”none” stroke=”none” points=”250,200 358.03154,171.13047
250,26.782820 141.96846,55.65235”/>

<polygon fill=”none” stroke=”none” points=”250,200 141.96846,315.47812
250,286.60859 358.03154,171.13047”/>

<polygon fill=”none” stroke=”none” points=”250,200 141.96846,55.65235
33.93691,171.13047 141.96846,315.47812”/>

<polygon fill=”#880088” stroke-width=”2” stroke-linejoin=”bevel” stroke=”#0000ff”
points=”141.96846,315.47812 33.93691,171.13047 141.96846,142.26094 250,286.60859”/>

<polygon fill=”#440044” stroke-width=”2” stroke-linejoin=”bevel” stroke=”#0000ff”
points=”141.96846,55.65235 250,26.782820 141.96846,142.26094 33.93691,171.13047”/>

<polygon fill=”#CC00CC” stroke-width=”2” stroke-linejoin=”bevel” stroke=”#0000ff”
points=”358.03154,171.13047 250,286.60859 141.96846,142.26094 250,26.782820”/>
</g>

</svg>

Fig. 4. Representing a Cube using SVG.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 249

2.1.2. SceneBeans Image Transcoding
SceneBeans are originally introduced as a java component-based 2D image animation
framework by Pryce Magee during 2001 (Pryce and Magee, 2001). SceneBeananimation
encapsulates both a scene-graph and the behaviors that animate the nodes of that graph.
Most importantly, a SceneBean animation is also a scene-graph node, since this means we
can compose animations, applying transformation (e.g transcoding) and further animation
as required. A SceneBean is a reusable component that can be used in design/run time
Java Beans environments. For the outside word a SceneBean looks like a 2-D object with
well-defined properties and behaviours described in XML and constructed as a Scene
Graph. SceneBean fully supports all core features that Java Beans architecture provides
such as introspection, customization, persistence, event and properties model. Complete
support of Java Beans architecture should allow design time environments such as bean
builders operate SceneBeans exactly the same way as other beans. This should make con-
struction of different applets and applications as building blocks possible in bean builders.
In run-time environment SceneBeans as a part of some applet or application provides user
with visual 2-D interface. When used in bean builders SceneBeans may provide its own
2-D GUI to customize its properties visually (Fiaidhiet al., 2004). SceneBeans should be
able to provide different levels of Scene Graph abstraction, from complete scene to sep-
arate nodes. From this follows that every Scene Graph node should have corresponding
SceneBean class encapsulating functionality of this node. All SceneBean components are
packaged in JAR file. A SceneBeans is loaded by means of custom URL from JAR file.
When a new bean is added, the existing beans or at least any parents of this bean need
to know about it. So new shape types, can be written as beans and added to the program.
The bean will have procedures to draw itself in 2D, describe itself in the tree view and
read/write (serialise) itself to the standard formats. File read/write is done by serialising
the scenegraph structure. This starts with the rootBean this saves its own parameters in-
cluding child nodes below it (SFNode and MFNode). These child nodes are saved by
calling their own save procedures and so on recursively. So the whole scene graph can
be saved and each node only needs to know how to save its own parameters. File read is
done in the same way. So when a new node is added, it only needs to know how to load
and save itself, No other classes and no general read/write parsers are needed.

A SceneBean object is described using an XML metadata. The top-level of the
description is called <animation> which contains five types of sub-elements: a single
<draw> element defines the scene object to be rendered; <define> elements define named
scene-graph fragments that can be linked into the visible scene graph; <behaviour> ele-
ments define behaviors that animate the scene graph; <event> elements define the actions
that the animation performs in response to internal events; and <command> elements
name a command that can be invoked upon the animation and define the actions taken
in response to that command. Both <draw> and <define> elements can contain the ele-
ments <primitive>, <transform>, <style> and <compose>. SceneBeans defines an object
behavior with the “behavior” element and then animating the parameters of scene-graph
nodes with the “animate” tag. The behavior tag is used to instantiate behavior beans: the
parser maps the algorithm of the behavior to a Java class the same way as it does for

250 S.M.A. Mohammed, J.A.W. Fiaidhi

scene-graph nodes, although it searches a different set of packages. Like scene object
nodes, param tags are used to configure behaviors by setting their JavaBean properties.
SceneBeans is a framework for two-dimensional animations based on Java Beans. An an-
imation in SceneBeans is defined as a “scene graph” – Java Beans components that form
a directed a cyclical graph (DAG). Animations are defined in XML documents and con-
tain commands that instantiate and bind Java Beans components to each other. The XML
file used by SceneBeans requires a parser to translate the XML document into interactive
objects. The XML document type definition (DTD) used by the SceneBeans parser is rel-
atively minimal compared to DTDs for similar applications, such as the SVG standard.
The DTD does not prescribe a limited number of component types and their options, but
instead describes compositions of components that the parser loads dynamically and ma-
nipulates generically through the JavaBeans APIs. Fig. 5 illustrates an XML metadata for
an animated copter scene.

Like scene graph nodes, <param> tags are used to configure behaviours by setting
their JavaBean properties. Behaviours must be identified by an id attribute so they can
be referred by an <animate> element within the scene graph. Animate elements create a
binding between a behaviour and a property of a bean so that the behaviour modifies the
value of the property over time, therefore creating an animation. Commands that can be
invoked upon an animation are introduced by <command> elements which contain one or
more action elements of type <set>, <stop>, <start>, <reset>, <invoke> or <announce>.
Fig. 6 illustrates the SceneBean interface for processing the copter XML file.

Actually, scene graph is a common model for storing and retrieving graphical scenes
as used in computer graphics. A scene graph is a general data structure commonly used by
vector-based graphics editing applications. Many graphical applications uses the model
of scene graph to model flexible shapes (e.g., AutoCAD, Adobe Illustrator, CorelDraw
and OpenGL). The scene graph contains the pictorial data items that can be edited, shared
and displayed. Scene graphs showed clear benefits for improving rendering performance
and making more optimal use of the available hardware resources. By keeping a “re-
tained” model of the virtual world, scene graphs could make additional optimizations,
such as parallel processing culling and drawing, and most importantly: state sorting. State
sorting is a concept whereby all of the objects being rendered are sorted by similarities
in state (texture map, lighting values, transparency, and so on). Since changing state is
often an expensive operation due to hardware implementations, this is usually a big per-
formance win, even on the newest hardware. However, the main reason for focusing on
scene graph model is not only the performance gain. The primary idea behind scene graph
is its high level organization. It gives all objects types, even if they are totally different, a
unified access mechanism. For this reason the importance of scene graphs as a powerful
tool for modeling any scene including virtual reality or 3D scenes has been extended and
currently most of the notable software venders to adopt it for their graphics APIs (e.g.,
Java3D, VRML, Cult3D, OpenSceneGraph, Cosmo 3D, X3D MESH , IrisGL, Performer
and OpenGL/Direct3D). Particularly Java3D is getting more popularity as it combines
the vast knowledge of the collaborated companies which includes venders Intel, Sili-
con Graphics, Apple, and Sun. Java3D has been designed to be a platform-independent

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 251

01 <?xml version=’’1.0’’?>
03 <animation width=’’256’’ height=’’256’’>
04 <behaviour id=’’rotor-spin’’ algorithm=’’Loop’’

state=’’\$\{rotor_state=stopped\}’’>
05 <param name=’’from’’ value=’’0.0’’ />
06 <param name=’’to’’ value=’’2*pi’’ />
07 <param name=’’duration’’ value=’’1.0’’ />
08 </behaviour>
10 <command name=’’start’’>
11 <start behaviour=’’rotor-spin’’ />
12 </command>
14 <command name=’’stop’’>
15 <stop behaviour=’’rotor-spin’’ />
16 </command>
18 <define id=’’rotor’’>
19 <primitive type=’’polygon’’>
20 <param name=’’pointCount’’ value=’’4’’ />
21 <param name=’’points’’ index=’’0’’ value=’’(0, 0)’’ />
22 <param name=’’points’’ index=’’1’’ value=’’(-16, 96)’’ />
23 <param name=’’points’’ index=’’2’’ value=’’(0, 100)’’ />
24 <param name=’’points’’ index=’’3’’ value=’’(16, 96)’’ />
25 </primitive>
26 </define>
28 <define id=’’rotors’’>
29 <style type=’’RGBAColor’’>
30 <param name=’’color’’ value=’’000000’’/>
31 <primitive type=’’circle’’>
32 <param name=’’radius’’ value=’’12’’ />
33 </primitive>
34 </style>
36 <transform type=’’rotate’’>
37 <param name=’’angle’’ value=’’1.0’’ />
38 <animate param=’’angle’’ behaviour=’’rotor-spin’’ />
40 <style type=’’RGBAColor’’>
41 <param name=’’color’’ value=’’888888’’/>
42
43 <paste object=’’rotor’’ />
45 <transform type=’’rotate’’>
46 <param name=’’angle’’ value=’’2*pi/3’’ />
47 <paste object=’’rotor’’ />
48 </transform>
50 <transform type=’’rotate’’>
51 <param name=’’angle’’ value=’’4*pi/3’’ />
52 <paste object=’’rotor’’ />
53 </transform>
54 </style>
55 </transform>
56 </define>
58 <draw>
59 <paste object=’’rotors’’ />
60 </draw>
61 </animation>

Fig. 5. An XML metadata of an animated copter scene.

252 S.M.A. Mohammed, J.A.W. Fiaidhi

Fig. 6. SceneBeans interface for rotors.xml.

API concerning the host’s operating system (PC/Solaris/Irix/HPUX/Linux) and graphics
(OpenGL/Direct3D) platform, as well as the input and output (display) devices. The im-
plementation of Java3D is built on top of OpenGL, or Direct3D. The high level Java3D
API allows rapid application development which is very critical, especially nowadays.

A Java 3D scene graph consists of a collection of Java 3D node objects connected in
a tree structure. These node objects reference other scene graph objects callednode com-
ponent objects. All scene graph node and component objects are subclasses of a common
SceneGraphObject class. The SceneGraphObject class is an abstract class that defines
methods that are common among nodes and component objects. Scene graph objects are
constructed by creating a new instance of the desired class and are accessed and manip-
ulated using the object’s set and get methods. Once a scene graph object is created and
connected to other scene graph objects to form a subgraph, the entire subgraph can be
attached to a virtual universe – via a high-resolution Locale object-making the objectlive
Prior to attaching a subgraph to a virtual universe, the entire subgraph can becompiled
into an optimized, internal format. The Java 3D renderer incorporates all graphics state
changes made in a direct path from a scene graph root to a leaf object in the drawing of
that leaf object. The View object is the central Java 3D rendering object for coordinating
all aspects of viewing. All viewing parameters in Java 3D are either directly contained
within the View object or within objects pointed to by a View object. Java 3D supports
multiple simultaneously active View objects, each of which can render to one or more
canvases (see Fig. 7).

The basic idea of adopting Java3D within a flexible component based architecture can
be easily done within the framework of Java Beans. The viewing of the 3D scene will be
the responsibility of these beans. A bean interface will then represent an animate loop
that runs continuously which alternately calls two other methods (e.g step then render).
Step and render are both called on sceneBean, which is the root of the scenegraph, and
are then called on the subnodes so that they are called on all nodes in the scenegraph.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 253

Fig. 7. Viewing a Scene using Java3D.

The reason that they are separate methods and not all done in the same method is that if
there are many views we may have to render the scene many times before stepping on to
the next frame. Fig. 8 illustrates the primitive idea of rendering Java3D scene within the
framework of Java beans.

Such primitive implementation of the rendering process based on Java beans was
introduced recently by Martin Baker at his web page(www.martinb.com). However,
Baker’s rendering APIs supports only VRML type events which are unnecessarily com-
plex. For this reason, many rendering libraries (such as RealityLab, RenderMorphics,
IRIS Performer) have developed a simpler notion ofrendering than VRML 1.0. How-
ever, the mismatch between these rendering libraries and VRML causes performance
problems and implementation complexity, and these problems become much worse in
VRML 2.0 as we add the ability to change the world over time. There are many other
problems associated with the use of VRML, in decreasing order of importance. These
problems are:

1. Browser Configuration. While virtual reality browsers exist, most are imple-

Fig. 8. Rendering a Java3D frame within the framework of Java Beans.

254 S.M.A. Mohammed, J.A.W. Fiaidhi

mented as plug-ins to Netscape and Internet Explorer, and most users are unwilling
or unable to install such plug-ins.

2. Browser Performance. VRML files are typically large and processing is non-
trivial, which result in substantial delays in both scene downloading and scene
rendering.

3. Browser Navigation.Navigation in virtual 3D spaces is hard for the average user.
4. Cost of Content.3D scene creation is much more difficult, time-consuming, and

expensive than creation of textual and 2D graphical data.
5. Scene Connectivity.VRML hyperlinking results in a discontinuity and loss of the

virtual reality feeling.

However and in order to overcome these problems associated with VRML, we can use
the standard WC3 X3D or XJ3D instead of VRML in describing Java3D scene graphs.
This approach has been implemented by Fiaidhi (2004) in which it was called Virtual
SceneBeans. The use of Virtual SceneBeans require changing the way Baker’s describe
and parse the beans events. Moreover by using virtual SceneBeans, peers can interact with
the image rendering engine by changing the X3D/XJ3D description or altering directly
the Scene Graph. The X3D/XJ3D specification describes the map and objects that are
to be rendered by the displaying engine and the X3D/XJ3D parser is responsible for
interpreting the inputs into the Scene Graph which can then be viewed into the required
scene. Actually, the use of Java 3D provides application programmers with two different
means for reusing scene graphs (see (Ebner, 2002)). First, multiple scene graphs can share
a common subgraph. Second, the node hierarchy of a common subgraph can be cloned,
while still sharing large component objects such as geometry and texture objects. In the
first case, changes in the shared subgraph affect all scene graphs that refer to the shared
subgraph. In the second case, each instance is unique-a change in one instance does not
affect any other instance. An application that wishes to share a subgraph from multiple
places in a scene graph must do so through the use of the Link leaf node and an associated
SharedGroup node. The SharedGroup node serves as the root of the shared subgraph. The
Link leaf node refers to the SharedGroup node (see Fig. 9).

A SharedGroup node allows multiple Link leaf nodes to share its subgraph according
to the following semantics:

• A SharedGroup may be referenced by one or more Link leaf nodes. Any runtime
changes to a node or component object in this shared subgraph affect all graphs
that refer to this subgraph.

• A SharedGroup may be compiled by calling its compile method prior to being
referenced by any Link leaf nodes.

Only Link leaf nodes may refer to SharedGroup nodes. A SharedGroup node cannot
have parents or be attached to a Locale. A shared subgraph may contain any group node,
except an embedded SharedGroup node (SharedGroup nodes cannot have parents).

However, sharing subgraphs among peers as well as conveying the X3D image de-
scription requires a suitable protocol to enforce peers collaborations and user immersion.
The next section provides our view on such protocol.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 255

Fig. 9. Shared subgraph.

3. An Intermediary Protocol for P2P and Grid Environments

At present, most tele-collaboration applications are not designed in the approach of open
system and cannot communicate with each other. It is of substantial benefits to Internet
users if we can have an integrated collaboration environment, which combines image
streaming, instant messaging as well as other collaboration applications into a single
easy-to-use, intuitive environment. Therefore, it is very important to create a more general
framework to cover the wide range of collaboration solutions and allow different users
from different communities to collaborate. To integrate heterogeneous systems into one
collaboration system, we need to reach the following goals (Foxet al., 2003):

(1) Different kinds of application endpoints should join/leave in the same collabora-
tion session.

(2) Different providers for multipoint multimedia and data collaboration should be
connected together to build unified multimedia and data multipoint channels.

(3) A common user interface should be present for all the collaboration participants
using different multimedia and data application endpoints.

Especially the first goal requires a common signalling control protocol and event bus,
which specifies the message exchange procedure between different types of collaboration
endpoints and session servers. Web-service seems to be the best candidate for this frame-
work since it can run across various platforms and is easy to be extended and understood.
The control protocol consists of three parts: user session management, application session
management and resource contention management. Since there are various control pro-
tocols for different collaboration technologies, we need to wrap them into web-services
and integrate these services in a more general framework. In addition, portlets (Hepper
and Hesmer, 2003) which have become an increasingly popular concept can be used
to describe visual user interfaces to these heterogeneous services. A/V and other data
collaboration endpoints can be wrapped into portlets to make them modular, reusable
software components. Moreover a XGSP collaboration portal can be built by aggregat-
ing these portlets. This way of building an application is termed as MVC (Model, View

256 S.M.A. Mohammed, J.A.W. Fiaidhi

and Controller) and has significant advantages over traditional bundled applications and
intensively used in distributed systems including JavaAWT and Swing. We can target ap-
plications to multiple clients by intercepting messages and acting as a distributed gateway
between different styles of Grids and peer-to-peer networks by making the uniform bus.
Thus this uniform bus acts as intermediary or a federation broker for different different
distributed systems. Luckily most of such requirements are available in Narada Brokering
Intermediary Protocol (www.naradabrokering.org) which is an open-source protocol
that has features of both the Java Message Service (JMS) and the peer-to-peer technology
JXTA. The Narada Brokering Protocol deals with all types of communication whether
it is in the form of control packets or RTP based multimedia streams. Based on Narada
Brokering, systems like, the Global-MMCS video conferencing (Uyaret al., 2003) which
enables heterogeneous clients to join the same real-time multimedia sessions. It provides
a flexible architecture to support even more standards and applications. Thus allowing
Web/Grid services for session control, media type conversion, audio mixing and video
mosaicing.

For constructing a collaborative Web service which can let learners to share Virtual
SceneBeans, we developed an intermediary protocol (see (Fiaidhi, 2004)). In this pro-
tocol, the resource-facing input/output ports supply the information which is to define
the state of the Web Service; the user-facing input, output ports pass control information
by the user, and supply information for constructing the user interfaces. The messages
on these ports define the state and results of each Web Service. On one side of the port
SceneBeans can be converted to a SceneGraph object (i.e., a tree with nodes represent-
ing the image) and on the other side the GVT (graphical Victor Toolkit) can reflect/view
the Scene Graph structure for rendering purposes. The Scene Graph events specifica-
tions provide a generic event model that propagates changes in the scene nodes of its
tree structure. Moreover, we need to use the XGSP (XML General Session Protocol),
SOAP (Simple Object Access Protocol) and the RTP (Transport Protocol for Real-Time
Applications) protocols to describe registration, session parameters, session membership

Fig. 10. Virtual SceneBeans tele-collaboration protocol.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 257

and negotiation of the SceneBeans. Fig. 10 illustrates the proposed Virtual SceneBeans
Interface Web Service.

4. Conclusions

Today, content providers on the Web grids are under constant pressure to make infor-
mation available in a variety of formats and for a variety of purposes including tele-
collaboration. Intermediaries extend the Client-Server web model to include content com-
putation at client and workgroup proxy. This programming model provides a new degree
of flexibility and allows applications to do things that they could not do before. Our vision
is to provide a better every-day working environment, with high-fidelity scene reconstruc-
tion for life-sized 3D tele-collaboration using such intermediaries. In particular, we want
to provide the user with a true sense of presence with our remote collaborator and their
real surroundings, and the ability to share and interact with 3D scenes regardless of the
different rendering capabilities of their viewing devices. The challenges related to this
vision are enormous and involve many technical tradeoffs, particularly in scene sharing
and reconstruction. In this paper we presented an investigation toward this ultimate goal.
By assembling the best of available intermediary technologies in scene reconstruction,
rendering, and distributed scene graph, we can achieve this goal. This recipe for achiev-
ing such goal should be based on Virtual SceneBeans with a P2P/Grid protocol which is
basically built upon Narada Brokering middleware. The developed prototype for a toolkit
that can be used for image tele-collaboration is still under development by our ongoing
research project at Lakehead. Fig. 11 shows our toolkit interface. The Scene Graph ed-
itor used in the developed toolkit resembles a software developed by brown university
(www.cs.brown.edu/exploratories/home.html).

Fig. 11. The GUI for or virtual SceneBeans Builder interface.

258 S.M.A. Mohammed, J.A.W. Fiaidhi

References

Ebner, M. (2002). Evolutionary design of objects using scene graphs. In C. Ryanet al. (Eds.),Proceedings
of the 6th European Conference on Genetic Programming (EuroGP 2003). Essex, Springer-Verlag, UK.
pp. 47–58.

Fiaidhi, J. (2004). Virtual SceneBean: a learning object model for collaborative virtual learning environment.
Informatics in Education, 3(2).

Fiaidhi, J., S. Mohammed and S. Sisko (2004). SceneBeans: a tool for constructing collaborative multime-
dia learning objects. In9th Western Canadian Conference on Computing Education (WCCE04), May 6–7.
Kelowna, BC, Canada. pp. 187–195.

Fictcher, P., and M. Waterhouse (2002).Web Services Business Strategies and Architectures. Wrox Press, ASIN:
1904284132.

Fox, G. et al. (2003). A web services framework for collaboration and videoconferencing. InWorkshop of
Advance Collaboration Environment (WACE), June 22. Seattle.

Hepper, S., and S. Hesmer (2003). Introducing the Portlet specification.Java World Journal, August 1 issue.
http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-portlet.html

Pryce, N., and J. Magee (2002).SceneBeans: A Component-Based Animation Framework for Java. Technical
Report, Imperial College.
www.dse.doc.ic.ac.uk/Software/SceneBeans/downloads/scenebeans.pdf

Sarkar, M.B.et al. (2003). Intermediaries and cybermediaries: a continuing role for mediating players in the
electronic marketplace.JCMC, 1(3).

Smith, J., R. Mohan and C.S. Li (1998). Content-based transcoding of images in the internet. InProceeedings
of IEEE Int. Conference on Image Processing, October (ICIP-98).

Uyar, A.et al. (2003). An integrated videoconferencing system for heterogeneous multimedia collaboration. In
7th IASTED International Conference on Internet and Multimedia Systems and Applications, August 13–15.
Honolulu, Hawaii.

Transcoding Aspects for Image Tele-Collaboration within Web and P2P/Grid 259

S.M.A. Mohammed received his BSc in applied mathematics (Baghdad University
1977), and his graduate degrees in computer science from Glasgow University (MSc
1981), and Brunel University (PhD 1986). Since late 2001, Dr. Mohammed is an associate
professor of computer science at Lakehead University. Formerly, from 1986–1995, Dr.
Mohammed was an assistant/associate professor of computer science at Baghdad Univer-
sity holding the position of the Graduate Organizer in Computer Science. During 1996–
2001, he served as the chair of computer science at four different universities: Amman
University (1995–1996), Philadelphia University (1996–1997), Applied Science Univer-
sity (1997–2000), and Higher College of Technology(2000–2001). Dr. Mohammed has
co-authored four text books in compilers, artificial intelligence, Java pogramming and ap-
plied image processing, published over 70 refereed publications, was the MSc advisor for
17 students and 1 PhD student, and has received research support from a variety of gov-
ernmental and industrial organizations. Dr. Mohammed provided consultations for a vari-
ety of organizations. Dr. Mohammed organized two international conferences on comput-
ers and their applications during 1997 (at Philadelphia University) and 1998 (at Applied
Science University) as well as a Regional Symposium on eEducation during 2001 (at
Higher College of Technology). Dr. Mohammed’s research interests include medical im-
age processing, multimedia learning objects, lightweight security, artificial intelligence
and fuzzy logic. Dr. Mohammed is also on the editorial boards of the International Jour-
nal of Computing and Information Sciences, Regional Editor of Journal of Information
and Technology, Regional Editor of the American Journal of Applied Science, member
of the Editorial board of the International Arab Journal of Information Technology and
the Asian Journal of Information Technology. Dr. Mohammed is a member of the British
Computer Society, member of the Canadian Image Processing & Pattern Recognition So-
ciety, member of the IEEE Signal Processing Society and member Imaging Science and
Technology Society.

J.A.W. Fiaidhi is a professor of computer science at Lakehead University. She received
her graduate degrees in computer science from Essex University , UK (1983), and PhD
from Brunel University, UK. (1986). She served also as assistant/associate/full profes-
sor at University of Technology, Philadelphia University, Applied Science University and
Sultan Qaboos University. Dr. Fiaidhi’s research interests include learning objects, XML
search engine, multimedia learning objects, recommender systems, software forensics,
Java watermarking, collaborative eLearning systems, and software complexity. Dr. Fi-
aidhi is one of Canada Information Systems Professional (I.S.P.), member of the British
Computer Society (MBCS), member of the ACM SIG Computer Science Education, and
member of the IEEE Forum on Educational Technology.

260 S.M.A. Mohammed, J.A.W. Fiaidhi

Nuotolinio bendradarbiavimo vaizd ↪u perkodavimo aspektai

Sabah M.A. MOHAMMED, Jinan A.W. FIAIDHI

Nuotolinis bendradarbiavimas teiks galimyb↪e tarpusavyje nutolusiems vartotojams bendradar-
biauti virtualioje aplinkoje taip, lyg jie b̄ut ↪u toje pǎcioje vietoje. Tai kompiuterini↪u tinkl ↪u ir žinia-
sklaidos sinteże siekiant patobulinti bendradarbiavimo aplinkas. Nuotolinio bendradarbiavimo da-
lyviai gali vydyti paiešk↪a duomen↪u saugyklose ir vizualizuoti tuos duomenis, valdyti sudėtingo
mokslinio ir inžinierinio modeliavimo eig↪a.

Straipsnyje išnagriṅetos perkodavimo priemonės, reikalingos efektyviam bendradarbiavimui
Interneto bei P2P/Grid aplinkose. Nustatyta, kad tiek Scene Graphs, tiek SVG DOM yra būtini
perkodavimui.

