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Abstract. Since threshold proxy signature has been proposed, all threshold proxy signature
schemes are based on the discrete logarithm problems in the modular multiplicative group which
has an elementg with a large prime order. Nowadays this kind of threshold proxy signature schemes
become more and more complex and time-consuming for security and specific requirement. In this
paper, we propose a (bilinear) pairing-based threshold proxy signature scheme with known signers,
analyze its security and check the following properties the proposed scheme has:non-repudiation,
unforgeability, identifiability, distinguishability, verifiability, prevention of misuse of proxy signing
right, etc. Moreover, we point out that the proposed scheme is of great efficiency by comparing it
with Sun’s and Hsuet al.’s scheme.
Key words: cryptography, digital signatures, proxy signature, threshold proxy signature, bilinear
pairing.

1. Introduction

The proxy signature scheme (Mamboet al., 1996a; Mamboet al., 1996b) a variation
of ordinary digital signature schemes, which enables a proxy signer to sign messages
on behalf of the original signer, has many applications in mobile agent environment and
electronic transaction. There are, so far,three types of delegation:full delegation, partial
delegation, and delegation by warrant. In the full delegation, a proxy signer is given the
same private key as the original signer has, and computes the same signatures as the
original signer does. In the partial delegation (Mamboet al., 1996b), the original signer
uses his private key to create a proxy signature key and sends it to the proxy signer in a
secret way. The proxy signer uses the proxy signature key to compute proxy signatures on
behalf of the original signer. For the security reason, it must be computationally infeasible
to compute the original signer’s private key from the proxy signer’s proxy signature key.
In the delegation by warrant (Neuman, 1993), the original signer gives the proxy signer a
warrant, composed of a message part and a public signature key, which certifies that the
proxy signer is legal. Then the proxy signer use the corresponding private key to sign the
message on behalf of the original signer.

* Corresponding author.
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Following the development of proxy signature scheme (Hsuet al., 2001; Hwanget
al., 2000; Hwang and Chen, 2003; Li and Cao, 2002; Liet al., 2002; Liet al., 2003a; Li
et al., 2003b; Mamboet al., 1996a; Mamboet al., 1996b; Neuman, 1993; Sun, 1999; Sun
et al., 1999; Zhang and Kim, 1997; Zhang and Kim, 2003), the threshold proxy signature
was also widely studied in (Hwang and Chen, 2003; Hsuet al., 2001; Hwanget al.,
2000; Li and Cao, 2002; Sun, 1999; Zhang and Kim, 1997; Zhang and Kim, 2003). In
a (t, n) threshold proxy signature scheme, the original signer authorizes a proxy group
with n proxy members. Anyt or more proxy signers can cooperatively employ the proxy
signature keys to sign messages on behalf of an original signer, butt − 1 or fewer proxy
signers cannot. Threshold proxy signature with known signers is proposed by Sun (Sun,
1999) in 1999, which has the property that thet proxy signers’ identity who cooperate
to generate the proxy signature can be verified in the equation of verification. After that,
Hwang and Sunet al. (Hwanget al., 2000) pointed out that Sun’s scheme was insecure
against collusion attack. By the collusion, anyt − 1 proxy signers among thet proxy
signers can cooperatively obtain the secret key of the remainder one. Then they also
proposed an improved scheme which can guard against the collusion attack. However,
Sun’s scheme is vulnerable against conspiracy attack for another weakness. That is, any t
malicious proxy signers can collusively derive the secret keys of the other proxy signers
in the group and can impersonate some other proxy signers to generate proxy signatures.

Up to the present, all threshold proxy signature schemes are still based on the discrete
logarithm problems in the multiplicative groupZ∗

p wherep is a large prime. This kind of
threshold proxy signature schemes become more and more complex and time-consuming
for security and specific requirement. Since the GDH signature (short signature scheme)
in (Bonehet al., 2001) has been proposed by Bonel et al many cryptosystems based on
bilinear, non-degenerate, efficiently computable mappings (called pairings) over certain
groups have been widely studied. So in this paper we propose a new kind of threshold
proxy signature with known signers based on pairings which could be built from Weil
pairing or Tate pairing on an elliptic curve or a supersinglar elliptic curve.

At first we will introduce some related work about the bilinear pairings, then state the
proposed threshold proxy signature scheme based on bilinear pairings. Next we analyze
the security of the proposed scheme. After that, we will compare the proposed scheme
with Sun’s and Hsuet al.’s scheme in terms of computational complexities in some cases.
Finally, we will draw a conclusion on the whole paper.

2. Background and Related Work

Here we summarize some concepts of bilinear pairings using similar notations as in
(Zhang and Kim, 2003).

2.1. Bilinear Pairings

Let G1 andG2 be additive and multiplicative groups of the same prime orderq, respec-
tively. Let P be a generator ofG1. Assume that the discrete logarithm problems in both
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G1 andG2 are hard to solve. Letê: G1 × G1 → G2 be a pairing which satisfies the
following properties:

1. Bilinear : ê(aP, bP
′
) = ê(P, P

′
)ab for all P , P

′ ∈ G1 and alla, b ∈ Z.
2. Non-degenerate: If ê (P, P

′
) = 1,∀P

′ ∈ G1 thenP = O .
3. Computable: There is an efficient algorithm to computeê(P,P

′
) for anyP,P

′ ∈G1.

To construct the bilinear pairing, we can use the Weil pairing or revised Tate pairing
associated with supersinglar elliptic curves.

With such a groupG1, we can define the following hard cryptographic problems:

• Discrete Logarithm (DL) Problem: Given P, P
′ ∈ G1, find an integern such

thatP = nP
′

whenever such integer exists.
• Computational Diffie–Hellman (CDH) Problem: Given a triple(P, aP, bP ) ∈

G3
1, for a, b ∈ Z∗

q , find the elementabP .
• Decision Diffie–Hellman (DDH) Problem:Given a quaternion(P, aP, bP, abP ) ∈

G
4
1, for a, b, c ∈ Z

∗
q , decide whetherc = ab (mod q) or not.

• Gap Diffie–Hellman (GDH) Problem: A class of problems where the CDH prob-
lem is hard but the DDH problem is easy.

Groups where the CDH problem is hard but the DDH problem is easy are called
Gap Diffie–Hellman (GDH) groups Details about them can be seen in (Boldyreva, 2003;
Bonehet al., 2001; Boneh and Franklin, 2001; Bonehet al., 2003; Joux and Nguyen,
2001).

2.2. A GDH Signature Scheme

A signature schemeS consists three algorithms. A randomizedkey generationalgorithm
K takes a global informationI and outputs a pair(sk, pk) of a secret and a public keys.
A randomizedsignature generationalgorithmS takes a messageM to sign and global
information I and a secret keysk and outputsM and a signatureσ. A deterministic
verification algorithmV takes a public keypk, and a message and a signatureσ and
output 1 (accepts) if the signature is valid and 0 (rejects) otherwise.

The widely-accepted notion of security for signature schemes is unforgeability un-
der chosen-message attacks, the notion adjusted to the random oracle model is given in
(Bonehet al., 2001). Now we introduce the GDH signature scheme in (Bonehet al.,
2001). LetG1 be a GDH group. Let [{0, 1}∗ → G∗

1] be a hash function family, each
member of which maps arbitrary long strings to groupG

∗
1 andH be a random member of

this family. The global informationI contain the generatorP of G1, prime orderq and a
description ofH. The algorithms(K,S,V) of the GDH group signature schemeGS[G1]
are defined as follows.

• K(I): ParseI as(P, q, H). Pick randomx ← Z∗
q and computeY ← xP . Return

(pk = (P, q, H, Y ), sk = x).
• S(I, sk, M): ParseI as(P, q, H). Computeσ = xH(M). Return(M, σ).
• V(M, pk, σ): Parsepk as(P, q, H, Y ). If ê (P, σ) = ê(Y, H(M)), then return 1

else return 0.
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In (Bonehet al., 2001) the authors state and prove the following result.

Theorem 1. Let G be a GDH group, ThenGS[G] is a secure signature scheme in the
random oracle model.

3. Proposed Scheme

In this section we propose a partial delegation threshold proxy signature scheme with
warrantmω which records the identities of the original signer and the proxy signers of
the proxy group, parameterst andn, the valid delegation time, etc. It is also a proxy-
protected threshold proxy signature scheme.

The system parameters are the same as those in the GDH signature scheme assuming
thatG1 andG2 are additive and multiplicative groups of the same prime orderq, P is a
generator ofG1, ê: G1 × G1 → G2 is a secure bilinear pairing(Bonehet al., 2003),H1:
{0, 1}∗ × G1 → Z

∗
q , H2: {0, 1}∗ → G1\{1} are two cryptographic hash functions and

the original signer has a secret keysk = xo randomly chosen fromZ∗
q and a public key

pk = Y = xoP which is certified by CA (Certificate Authority). Letp1, p2, p3, · · · , pn

be then proxy signers. Each proxy signer has a secret keysk = xi randomly chosen from
Z∗

q and a public keypk = Y = xiP which is certified by CA as well. LetASID (Actual
Signers’ID) denotes the identities of the actual signers. Our scheme mainly consists of
three protocols: Proxy share generation protocolT PK, Generation of the proxy signature
without revealing sharesT PS, and Proxy signature verification protocolT PV.

3.1. Proxy Share Generation ProtocolT PK

Proxy share generation protocol makes use of Verifiable Secret Sharing(V SS) proposed
by Pederson (Pedersen, 1991). To delegate the signing capability to proxy signers, the
original signer Alice uses the Schnorr signature scheme to make the warrantmω signed
(since the Schnorr signature scheme is known to be provably-secure (Pointcheval and
Stern, 1996) in the random-oracle model). There is an explicit description of the dele-
gation relation in the warrantmω. If the following process is finished successfully, each
proxy signer will get his or her proxy share key.

Step1. The original signer picks a random numberr ∈ Z∗
q , computesU = rP . Let

h = H1(mω, U), computesv = (r + hx). The signature ofmω is σ = (U, v), then Alice
(the original signer) sendsσ andmω to each proxy signer.

Step2. Each proxy signer verifies the validity of the signature onmω by checking
whether the following equation sounds or not.

vP = U + hY, (1)

and acceptσ if and only if the above equation sounds. If the signatureσ is valid, proxy
signerpi picks up a random numberki, broadcastskiP and computessi ≡ n−1v + xi +
ki, mod q with his own secret key.
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Step3. Proxy signerpi picks up randomly a polynomialfi(z) of degreet − 1 in Zq

such thatfi(0) = si = ai,0. That is

fi(z) = si + ai,1z + ai,2z
2 + · + ai,t−1z

t−1, (2)

thenpi computes and broadcastsai,jP for j = 1, 2, 3, · · · , t − 1, doesnot need to broad-
castai,0P for ai,0P = n−1vP + Yi + kiP ; sendsfi(j) secretly to each proxy signerpj

for j = 1, 2, 3, · · · , n; j �= i.
Step4. Proxy signerpi after receivingfj(i) from pj , j = 1, 2, 3, · · · , n; j �= i, verifies

fj(i) by checking

fj(i)P =
t−1∑
k=0

ik · aj,kP. (3)

If the check fails,pi broadcasts a complaint againstpj . Assume that none of the proxy
signers has a complaint. Then the proxy signerpi computes the secret proxy sharex′

i =∑n
k=1 fk(i), and computes the public proxy shareY ′

i = x′
iP .

In this protocol if we letf(z) =
∑n

i=1 fi(z), we will get the secret proxy share
x′

i = f(i) in fact. The public proxy shareY ′
i must bef(i)P .

3.2. Generation of the Proxy SignatureT PS

Let m be a message to be signed. Without loss of generality, we assume that
p1, p2, p3, · · · , pt are thet proxy signers who want to cooperate to sign a messagem

on behalf of the original signer Alice.
Setp1. Each proxy signerpi for (i = 1, 2, · · · , t) uses his or her secret proxy share

x′
i to sign the messagem. Referring to the signature scheme in (Bonehet al., 2001)

each proxy signerpi computesωi =
∏j∈{1,2,···,t}

j �=i
j

j−i , gets the partial signature of the
messageσi = (x′

iωi + xi)H2(m).
Setp2. Thet proxy signers after gatheringσi, verify σi by checking

ê(P, σi) = ê
(
ωiY

′
i + Yi, H2(m)

)
. (4)

If the above equation doesn’t hold, They will knowpi does not send the correct partial
signature orpi is not honest one, we may ask another one orpi to do Step 1 again.

Now we assume the equation holds, they can compute the proxy signatureσ′ =∑t
i=1 σi andK =

∑n
m=1 kmP , record thet proxy singers’ID on ASID. So the com-

plete valid proxy signature will be the tuple< m, U, mω, σ′, K, ASID >.

REMARK 1. In Step 2 we may designate one of thet proxy signers or a clerk who is
assumed honest to check the correctness of the partial signature and generate the complete
signature. If we use{i1, i2, · · · , it} to represent thet proxy signers’ID which is a subset
of {1, 2, · · · , n}, we may use

∑t
k=1 2ik representASID, SoASID is only ann-bit-long

string.
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3.3. Proxy Signature Verification ProtocolT PV

Receiving the threshold proxy signature< m, U, mω, σ′, K, ASID > of m, any verifier
can confirm the validity of the proxy signature and identify the actual signers. The steps
of the phase are stated as follows:

Setp1. The verifier can identify the original signer and the proxy signers frommω

andASID, and get their public keys from the CA. Besides, he/she can also identify the
actual proxy signers.

Setp2. A recipient can verify the validity of the proxy signature by checking if the
following equation holds or not.

ê(P, σ′) = ê

(
U +

(
H1(mω, U)

)
Y + K +

n∑
i=1

Yi +
t∑

i=1

Yi, H2(m)
)

. (5)

If it holds, the recipient accepts the signature, otherwise rejects.

3.4. Correctness

The verification of the signature is justified by the following equations:

ê(P, σ′) = ê

(
P,

t∑
i=1

σi

)

= ê

(
P,

t∑
i=1

(x′
iωi + xi)H2(m)

)

= ê

(
P,

(
f(0) +

t∑
i=1

xi

)
H2(m)

)

= ê

(
P,

( n∑
i=1

fi(0) +
t∑

i=1

xi

)
H2(m)

)

= ê

(
P,

(
nn−1v +

n∑
i=1

(xi + ki) +
t∑

i=1

xi

)
H2(m)

)

= ê

(
P,

(
r + H1(mω, U)x +

n∑
i=1

(xi + ki) +
t∑

i=1

xi

)
H2(m)

)

= ê

((
r + H1(mω, U)x +

n∑
i=1

(xi + ki) +
t∑

i=1

xi

)
P, H2(m)

)

= ê

(
U +

(
H1(mω, U)

)
Y + K +

n∑
i=1

Yi +
t∑

i=1

Yi, H2(m)
)

. (6)

So the correctness of verification protocol is proved.
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4. Security Analysis of the Proposed Scheme

In the following section, we will prove that the proposed scheme can resist all kinds
of known attack including the forgery attack, conspiracy attack, public key substitution
attack etc.

Like the general proxy signature, our proposed signature scheme satisfies the require-
ments stated in abstract as well.

Distinguishability: This is obvious, because there is a warrantmω in a valid proxy sig-
nature, at the same time, this warrantmω and the public keys of the original signer
and proxy signer must occur in the verification equation of proxy signature.

Verifiability: The valid proxy signature for messagem will be the tuple< m, U, mω,

σ′, K, ASID >. From the construction of< U, σ′, K > and the verification phase,
the verifier can be convinced that the proxy signer has the original signer’s signa-
ture on the warrantmω. In general the warrantmω contains the identity informa-
tion and the limit of the delegated signing capacity etc, so our scheme satisfies the
verifiability.

Strong non-forgeability: First, the third adversary who wants to forge the proxy signa-
ture of messagem′ for the proxy signers and original signer must have the original
signer’s signatureσ on the warrantmω, but cannot forge this since Schnorr signa-
ture scheme is secure. And we can see even third adversary knows the signatureσ

sent by the original signer he cannot make a forgery signature on any other message
m′

ω, so he cannot make a forgery proxy signature onm′ either.

Second, the original signer cannot create a valid proxy signature, since the proxy
signature is obtained by the proxy signers using the GDH signature scheme (a
secure signature scheme) and the proxy signers’ secret proxy shares{x′

i} which
contain the private key{xi} of each proxy signer. And also the original signer
doesn’t know

∑n
i=1(xi + ki) and

∑t
i=1 xi, so the original signer cann’t forge a

valid proxy signature. Now we can see the proposed scheme is aproxy protected
one.

Third, proxy signer can’t forge valid proxy signatures. From the proxy signature
< m, U, mω, σ′, K, ASID >, any proxy signer can’t obtain the private keys of
other proxy signers. He/she can’t getk1, k1, · · · , kn randomly chosen by the proxy
signers and

∑t
i=1(x

′
i+xi) either because of difficult Discrete Logarithm problems.

Therefore, proxy signatures can’t be forged by any proxy signer.

Fourth, the designated proxy signer or clerk inStep 2of protocolT PS (Generation
of the proxy signature) can’t forge the proxy signatures either. From the partial sig-
natureσi the clerk can’t get the knowledgex′

iωi+xi of because of difficult Discrete
Logarithm problems. Of course, the clerk is unable to obtain the knowledge ofx′

i

or xi either. From the equationσ′ =
∑t

i=1 σi, the clerk can’t get
∑t

i=1(x
′
iωi +xi)

either because of the same reason. Therefore, the proxy signature can’t be forged
by the designated one.
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Identifiability: The valid signature contains the warrantmω, so any one can determine
the identities of the corresponding proxy signers from the warrant. As the verifier
also receivesASID from the valid proxy signature< m, U, mω, σ′, K, ASID >

which records the identity of the actualt proxy signers who cooperate in generating
the proxy signature. So the proposed threshold proxy signature is identifiable.

Strong nonrepudiation: As the identifiability, the valid signature contain the warrant
mω andASID, which must be verified in the process of verification, it cannot
be modified by the proxy signers. Thus once proxy signers creates a valid proxy
signature for the original signer, he cannot repudiate the signature creation. In the
verification phase the verifier also takes in the public keys of the proxy signers
including actual signer’s identity (ASID) and original signer, so the signers cannot
repudiate the signature creation either.

Prevention of misuse: In our proposed proxy signature scheme, using the warrantmω,
We had determined the limit of delegated signing capacity in the warrantmω. we
can conclude that any one who even knows the signaturev on mω can’t sign any
other message on behalf of the original signer since Schnorr signature scheme is
secure. So our proposed signature yields the property of prevention of misuse.

Next we will show that even whent − 1 proxy signers are corrupted (who have the
warrantmω), the proposed threshold proxy signature will still be secure. So we can con-
clude our scheme is a threshold proxy signature scheme.

Theorem 2. Even there exists an adversary who can corruptt− 1 proxy signers among
n proxy signers, TheT PK andT PS protocols still complete successfully.

Proof. In the T PK protocol we use the technique ofV V S, when each proxy signer
receivesv he must use his private key to generate a polynomialfi(z) of degreet − 1 in
Zq such thatfi(0) = si = ai,0 = n−1v + xi + ki in Step 3 of theT PK protocol. And in
Step 4 each proxy signerpi will check eachfi(j), So thet − 1 proxy signers cannot do
anything to cheat or forge.

In theT PS protocol every partial signatureσi is verified by the corresponding public
proxy shareY ′

i in the equation (4) of Step 2. Even at mostt− 1 signers can be corrupted,
the adversary still needs to get one partial signature from the other signers (which the
adversary can’t forge) to formt valid signature shares. Only witht valid signature shares,
the adversary can produce a valid signature.

What we want to point out next is that our threshold proxy signature can avoidcon-
spiracy attack in (Hsuet al., 2001) which sayst malicious proxy signers can impersonate
some other proxy signers to generate valid proxy signatures even may know the secret
keys of the other signers for misuse. In our scheme ift malicious proxy signers want to
impersonate some othert proxy signers to generate valid proxy signatures, they must use
{x′

i}, {xi} (i = 1, 2, · · · , n) or
∑t

i=1(x
′
iωi + xi), each proxy signer randomly chooses
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ki and publisheskiP that makes it impossible to know other proxy signers’ secret keys
by facing difficult Discrete Logarithm problem.

At last, the scheme can resist thepublic key substitution attack from the original
signer or any proxy signer. In the scheme, CA (Certificate Authority) is need. If the origi-
nal signer or any proxy signer wants to substitute a new public key for the original public
key, he/she must know the corresponding private key. In the public key substitution at-
tack, generally speaking, the attacker doesn’t know the corresponding private key. Thus,
the attacker can’t change its public key in the system public directory which is managed
by CA. So the public key substitution attack doesn’t work, either.

Through the analysis of security what we want to point out is that our proxy signature
scheme does not need secure channel for delivery of the signed warrant since Schnorr
signature scheme is secure. More precisely, the original signer can send the signaturev

on the warrantmω to the proxy signers through a public channel.

5. Performance Evaluation and Numerical Computation Sample

In this section, we compare our scheme with Sun’s scheme and Hsuet al.’s scheme in
terms of computation time, then we provide a simple numerical computation example of
our proposed scheme.

5.1. Performance Evaluation

We denote the following notations to facilitate the performance evaluation:
m: The time of performing a modular multiplication computation.
in: The time of performing a modular inverse computation.
exp: The time of performing a exponentiation computation.
h: The time of performing a cryptographic hash function mapping strings to a modular

group (such as hash functions in Sun’s scheme and Hsuet al.’s scheme orH1 in our
scheme).

Add: The time of performing a point addition computation.
Sca:The time of performing a scalar multiplication computation.
NA: Not available.
P: The time of performing a pair computation.
H: The time of performing a cryptographic hash function mapping strings to a GDH

group (such asH2 in our scheme).
Table 1 shows us the time cost in computations of Sun’s scheme, Hsuet al.’s scheme

and our scheme which shows our threshold proxy signature is of great efficiency. The Ta-
ble 1 excludes the computation cost on validatingfi(vj) in Sun’s scheme and Hsuet al.’s
scheme or correspondingfi(j) in our scheme. We also assumeYG =

∏n
i=1 yi, (mod p)

in Sun’s, Hsuet al.’s scheme and corresponding
∑n

i=1 Yi in our scheme are precomputed
before verification phase.

Since our scheme works on an elliptic curve or a supersinglar elliptic curve, we may
have small size keys as a advantage. Moreover the signature size is also small by using
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Table 1

Comparisons of efficiency

Sun’s scheme Hsuet al.’s scheme Our scheme

Secret share
generation

(n2 − 1)(t − 1) m
+ n(t − 1) exp

(n + 1) exp + n(t − 1)m 1 Sca + 1 h + 1 m
(Step1 in T PK)

The original signer: The original signer: The original signer:

Proxy share
generation

t exp + 1 h

+ (nt − n + 1) m

t exp + 1 h

+ (nt − n + 1) m

NA

Each proxy signer: Each proxy signer: Each proxy signer:

(t + 1) exp + 1 h

+ (2t − 1) m

(t + 1) exp + 1 h

+ (2t − 1) m

(t − 1) exp + 1 in

+ 1 Add + 1 m
+ 2(t + 2) m

(Step2, 3, 4 inT PK)

Partial proxy
signature

(4t2 − 7t + 5) m

+ 1h + t2exp

1 exp + (3t − 1) m

+ 1h + (t − 1)in

1m+1Sca+1H+2P

Whole proxy
signature

(3t2 − t − 2) exp
+(6t2 −7t+1) m

+ (t2 − t) in + 2h

(t2 + 4t) exp + 2 h
+ (4t2 − t − 1) m

+ (t2 − t) in

(n + 2t − 1) Add
+ t Sca + 2t P

(Step1, 2 inT PS)

Proxy signature
verification

4 exp + 2 h

+ (t + 3) m

4 exp + 2 h + (t + 3) m 1h + 1Sca + 1H

+ 2P + (t + 3)Add

(Step1, 2 inT PV)

our threshold proxy signature scheme, for they are both points on an elliptic curve or a
supersinglar elliptic curve.

5.2. Main Numerial Computation of the Scheme

In our scheme the main idea is to use bilinear pairings to construct new threshold proxy
signature schemes. We use Schnorr signature and GDH signature schemes including VSS
in the proposed scheme, most of them have standard algorithms which we won’t elabo-
rate. The only possible obstacle is how to compute bilinear pairings. Now we will take
Tate pairing as an example.

We review definition of Tate pairing first (Galbraithet al., 2002). LetE be an elliptic
curve over a finite fieldFq. We writeOE for the point at infinity onE. Letm be a positive
integer which is coprime toq. In most applicationsm is a prime andm|�E(Fq). Let k

be a positive integer such thatm|(qk − 1). Let G = E(Fqk) and writeG[m] for the
subgroup of points of orderm andG/mG for the quotient group (which is also a group
of exponentm). Then the Tate pairing is a mapping

< ·, · >: G[m] × G/mG → F ∗
qk/(F ∗

qk)m
. (7)

The quotient group on the right hand side of (7) can be thought of as the set of equiv-
alence classes ofF ∗

qk under the equivalence relationa ≡ b if and only if there exists
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c ∈ F ∗
qk such thata = bcm. Given the pointP compute a functiong such that the divisor

of g is equal tol((P )−(O)). Then compute a divisorD which is equivalent to(Q)−(O)
such thatD is disjoint from the support ofg. Then the value of the Tate pairing (up tolth
powers) is< P, Q >= g(D) whereg(D) =

∏
i g(Pi)

ni , if D =
∑

i niPi.
For each pair of pointsU, V on the elliptic curveE(Fqk), let gU,V be the rational

function given by the linegU,V : l1y+ l2x+ l3 = 0 throughU andV . Naturally, ifU = V

, thengU,V is the given by the equation of the tangent line atU , and if eitherU or V

is the point at infinityO, thengU,V represents the vertical line through the other point.
Furthermore, for brevity, we writegU instead ofgU,−U . We introduce Miller’s algorithm
for the Tate pairing to compute< P, Q >:

• Choose a random pointQ′ ∈ E(Fqk) and computeS = Q′ + Q ∈ E(Fqk).
• Sett = �log2(m)�, and let(mt, · · · , m0)2 be the binary representation ofm. Set

f = 1 andV = P .
• For i = t − 1 to 0 do

1. Setf = f2(gV,V (S)g[2]V (Q′))/((gV,V (Q′)g[2]V (S))) andV = [2]V.

2. If mi = 1 then setf = f(gV,P (S)gV +P (Q′))/(gV,P (Q′)gV +P (S)) and
V = V + P .

• Returnf .

5.2.1. Example
We consider elliptic curveE/F11: y2 = x3 + 3x. If m = 6, k can be 2, for6|(112 − 1)
but 6 can not divide(11 − 1). To compute the Tate pairing< P, Q > for P = (1, 9),
Q = (10, 9i) andm = 6, we carry out Miller’s algorithm.

• We chooseQ′ ∈ E(F112) to beQ′ = (6, 6). ThenQ + Q′ = (8 + 7i, 10 + 6i).
• The binary representation ofm = 6 is given by(m2, m1, m0)2 = (1, 1, 0)2, so

t = �log2(6)� = 2. Further, we setf = 1 andV = P = (1, 9).
• For i = 1:

1. We computegV,V andg[2]V :

gV,V = y + 7x + 6, g[2]V = x + 8.

Then

gV,V (S) = 6, g[2]V (Q′) = 3, g[2]V (S) = 5 + 7i, gV,V (Q′)=10,

and thus we set

f = 12 6 · 3
(5 + 7i) · 10

= 8 + i, V = [2](1, 9) = (3, 5).

2. Sincem1 = 1, we computegV,P andgV +P :

gV,P = y + 2x, gV +P = x.
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Then

gV,P (S) = 4 + 9i, gV +P (Q′) = 6,

gV,P (Q′) = 7, gV +P (S) = 8 + 7i,

and thus we set

f = (8 + 2i)
(4 + 9i) · 6
(8 + 7i) · 7 = 5 + 4i, V = (3, 5) + (1, 9) = (0, 0).

• For i = 0:

1. We computegV,V andg[2]V :

gV,V = x, g[2]V = 1.

Then

gV,V (S) = 8 + 7i, g[2]V (Q′) = 1,

g[2]V (S) = 1, gV,V (Q′) = 6,

and thus we set

f = (5 + 4i)2
8 + 7i

6
= 2 + 7i, V = [2](0, 0) = (0, 0) = O.

2. Sincem0 = 0, end.

• i = 0, so the program terminates and returnsf = 2 + 7i.

All the other implementation of the proposed scheme’s application is easy, since they
all have standard algorithms.

6. Conclusions

We have used Schnorr signature scheme on an elliptic curve or a supersinglar elliptic
curve to create an efficient pairing-based threshold proxy signature Schemes with known
signers. The threshold proxy signature scheme is based on secure bilinear pairings which
may be the first one using bilinear pairings to create threshold proxy signature with known
signers, since bilinear pairings have been found having many good properties in cryptog-
raphy. In security analysis some theorems have been proved to show the scheme’s se-
curity, the requirements which the proxy signature satisfies with has been checked also,
almost all kinds of attacks are shown to be useless in our scheme. Finally we compare the
performance of our scheme with other threshold proxy signature scheme, which shows
our scheme is also of great efficiency with small size keys and signature.
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Efektyvi poravimu gr ↪ista slenkstinio ↪igaliotojo parašo schema su
žinomais pasirašiusiaisiais

Haifeng QIAN, Zhenfu CAO, Qingshui XUE

Nuo tada, kai slenkstinio↪igaliotojo parašas buvo pasiūlytas, visos slenkstinio↪igaliotojo parašo
schemos yra grindžiamos diskretaus logaritmo uždaviniais modulinėje multiplikaciṅeje gruṗeje,
kuri turi g element↪a su dideliu pirminiu skaičiumi. Dabar šio tipo parašo schemos tampa vis
suḋetingesṅes ir, kad užtikrinus saugum↪a ir specifinius reikalavimus, sunaudojama daug laiko.

Šiame straipsnyje siūlomas poravimu gr↪ist ↪a slenkstinio↪igaliotojo parašo schem↪a su žinomais
pasirašiusiaisiais, analizuojamos ir tikrinamos šitokios jos savybės: neišsižaḋejimo, padirbiṅejimo,
tapatumo nustatymo, atskiriamumo, patikrinamumo, apsisaugojimo nuo klaidingo parašo teisi↪u
naudojimo ir kt. Be to, mes parodome, kad pasiūlytoji schema yra efektyvesnė nei ta, kuri↪a pasīulė
Sun, Hsu ir kiti.


