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Abstract. Recently, Tzeng proposed a provably secure and fault-tolerant conference-key agreement
protocol. It requires only a constant number of rounds to establish a conference key among all
honest participants. This article will show that Tzeng’s protocol does not offer forward secrecy. We
say that a conference-key agreement protocol offers forward secrecy if the long-term secret key of
any participant is compromised and will not result in the compromise of the previously established
conference keys. This property is important and has been included in most key agreement protocols
and standards. In this paper, an improvement based on Tzeng’s protocol is proposed and it achieves
forward secrecy. Under the Diffie–Hellman decision problem assumption and the random oracle
model, we show that the proposed protocol can withstand passive attacks and is secure against
impersonator’s attacks. The improved protocol requires a constant number of rounds to compute a
conference key. The improved protocol provides fault-tolerance.
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1. Introduction

With the growth of network technologies, many group communication services have be-
come the focus of future developments, such as tele-conferencing, collaborative works,
and secure group communications. Efficient and secure conference-key establishment
protocol design is a critical issue in providing security services for group communications
over insecure channels. There are two well-known kinds of conference-key establishment
protocols: conference-key distribution and conference-key agreement. In conference-key
distribution protocols (Anzaiet al., 2001; Hwang and Yang, 1995; Tseng and Jan, 1999),
there is a chairman who is responsible for generating and securely distributing a con-
ference key to other participants involved in a conference. A conference-key agreement
protocol (Bressonet al., 2002; Burmester and Desmedt, 1994; Horng, 2001; Steineret
al., 2000; Tzeng, 2002a) involves all participants cooperatively establishing a common
key without a chairman. One advantage of a key agreement protocol over a key dis-
tribution protocol is that no participant can predetermine the common key. In the past,
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many conference-key agreement protocols have been proposed. These protocols are clas-
sified into two kinds: authenticated (Bressonet al., 2002; Burmester and Desmedt, 1994;
Tzeng, 2002a) and non-authenticated (Horng, 2001; Steineret al., 2000). Since a non-
authenticated conference-key agreement protocol does not provide participant authenti-
cation, it is only suitable for an authenticated network channel. Generally, an authenti-
cated conference-key agreement protocol is more flexible for various system models and
requirements.

Conference-key agreement protocols are designed for various types of network con-
nection, such as the broadcast connection, the ring connection or the tree connection,
etc.. One notable result was presented by Burmester and Desmedt (1994). They proposed
several key agreement protocols based on various types of network connections. Funda-
mentally, their non-authenticated key agreement protocol under the broadcast channel is
quite efficient requiring only two rounds. However, their improved key agreement proto-
col with participant authentication (protocol 7) uses a sequential proof for authenticating
participants. Thus, the number of rounds required in the authenticated protocol is propor-
tional to the number of participants.

Recently, Tzeng (2002a) proposed a provably secure and fault-tolerant conference-
key agreement protocol based on the broadcast channel. Fault tolerance means that even
if there are many malicious participants attempting to disrupt the conference-key estab-
lishment, all other honest participants can compute the common conference key. It uses
two rounds to compute a conference key. The number of rounds is independent of the
number of participants. It is provably secure against passive attacks and impersonator’s
attacks under the variant Diffie–Hellman decision problem assumption (Boneh, 1998) and
the random oracle model (Bellare and Rogaway, 1993), respectively. However, Tzeng’s
protocol has a weakness that it does not offer forward secrecy.

Forward secrecy means that the compromise of a long-term key(s) cannot result in the
compromise of previously established conference keys. In the following, an attack sce-
nario is described to explain the practical significance of forward secrecy. Although the
probability that a malicious attacker obtains a legal participant’s secret key is small, the
malicious attacker could obtain any legal participant’s secret key with higher probability
as the time passes in the future. When the conference is significant and the conference
contents must be kept secret until a special time, if the conference key is compromised
and the encrypted messages will be revealed before the time is ripe, it could cause seri-
ous damage or do harm to others. Since a network or Internet is an open communication
channel, eavesdroppers can intercept the transmitted messages over the open communi-
cation channel. Suppose that a malicious eavesdropper records all transmitted messages
in conference-key establishment phase, while he also records all broadcast encrypted
messages among participants in conference-session phase. If a conference-key establish-
ment protocol does not provide forward secrecy, a malicious attacker could reveal the
encrypted messages of a secure conference in the future. For security robustness, this
property is very important and has been included in most key-agreement protocols (Bres-
sonet al., 2002; Burmester and Desmedt, 1994; Horng, 2001; Steineret al., 2000; Tseng,
2002) or standards (ANSI X9.63, 2001; IEEE Std 1363, 2000).
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In this paper, we will present how Tzeng’s protocol is unable to provide forward se-
crecy. To remedy this weakness, based on Tzeng’s protocol, we propose an improvement
with forward secrecy, while it remains the merits of the original protocol. The improved
protocol requires a constant number of rounds to compute a conference key. The im-
proved protocol also provides fault-tolerance.

2. Brief Review and Security Analysis of Tzeng’s Protocol

In this section, we briefly review Tzeng’s fault-tolerant conference-key agreement pro-
tocol (Tzeng, 2002a). Afterwards, we present that this protocol does not offer forward
secrecy.

The system has the following public parameters:

• q – a large prime;
• p – a large prime such thatp = 2q + 1;
• Gq – a subgroup of quadratic residues inZ∗

p , that isGq = {i2|i ∈ Z∗
p};

• g – a generator for the subgroupGq;
• H – a one-way function fromZq to Zq.

Meanwhile, each user in the system has the following:

• xi – Ui’s secret key and a random value inZ∗
q ;

• yi – Ui’s public key such thatyi = gxi mod p.

In this protocol, assume that there is an initiator calling for a secure conference with
n participants. Without loss of generality, letU = {U1, U2, ..., Un} be the initial set of
participants that want to generate a conference key. EachUi, 1 � i � n, knows the set
U . EachUi holds and agrees a messageM to deter the replay attack (Tzeng, 2002b).

Step 1. Secret distribution and commitment. Initially, each participantUi randomly se-
lectsRi andKi in Zq, andSi ∈ Z∗

q . Then,Ui constructs a polynomialhi(x) (over

Zq) with degreen that passes points(j, (yRi
j mod p) mod q), (1 � j � n), and

(0, Ki). Ui computes and broadcasts the following:

ωij = hi(n + j) mod q, 1 � j � n,

αi = gRi mod p,

γi = gSi mod p,

δi = S−1
i

(
H(Ki, M) − γixi

)
mod q.

Step 2. Subkey computation and verification. Upon receivingωjl, 1 � l � n, and
αj , each participantUi uses his secret keyxi to reconstruct the polynomial
h′

j(x) (over Zq) with degreen that passes points(n + l, ωjl), 1 � l � n,
and (i, (αxi

j mod p) mod q). Let K ′
j = h′

j(0) mod q. Then,Ui checks whether

gH(K′
j ,M) = y

γj

j γ
δj

j mod p holds or not. If it holds,Ui broadcasts “Vij =
success”. Otherwose,Ui broadcasts “Vij = failure”.
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Step 3. Fault detection. We omit the detail description here. If any fault is detected, all
honest participants must restart the protocol by deleting malicious participants from
the setU = {U1, U2, . . . , Un}.

Step 4. Conference-key computation. We denote that the final valid participant setU ′ is
U ′ = {Ui1, Ui2, . . . , Uim}, wherem � n and the equality denotes that no fault is
detected. Each participantUi may compute the conference key

K = (K ′
i1 + K ′

i2 + · · · + K ′
im) mod q.

In the following, we present that the above protocol cannot offers forward secrecy. If a
malicious user knows the secret keyxi of any participantUi, the malicious user may
compute all established conference-keys participated byUi. Suppose that a malicious
user intends to record all broadcast messages in the open network. Assume that in the
past a participantUi has ever participated in a conference. Since the malicious user
knows the secret keyxi of the participantUi, the malicious user uses the recorded mes-
sagesωjl, 1 � l � n, andαj to reconstruct the polynomialh′

j(x)(overZq) with de-
green that passes points(n + l, ωjl), 1 � l � n, and(i, (αxi

j mod p) mod q), then
computeK ′

j = h′
j(0) mod q. Thus, he may obtain all subkeysK ′

j , 1 � j � n, and
K = (K ′

i1 + K ′
i2 + ... + K ′

im) mod q. This is because each participant in a conference
uses “ephemeral” public keys of other participants to distribute the subkey. Therefore, all
previously established conference-keys participated byUi will be disclosed if a malicious
user knows the secret keyxi of participantUi.

3. The Improved Protocol with Forward Secrecy

Here, we present an improved protocol based on Tzeng’s protocol. The improved proto-
col with forward secrecy uses a temporary public key to distribute sub-keys, thus even
the disclosure of the participant’s secret key will not result in the compromise of pre-
viously established conference keys. In the improved protocol, the system model and
security assumptions are the same as ones of Tzeng’s protocol. Only Steps 1 and 2 in
Tzeng’s protocol need to be modified, and Steps 3 and 4 remain unchanged. The detailed
modifications are presented as follows.

Step 1.1. Temporary public-key distribution. Initially, each participant randomly selects
a short-term secret keysti ∈ Z∗

q and an integervi ∈ Z∗
q , and then computes and

broadcasts the following:

Ti = gti mod p,

Ai = gvi mod p,

Bi = v−1
i

(
H(Ti, M) − Aixi

)
mod q.

In fact,(Ai, Bi, M) can be called as a certificate for the temporary public keyTi.



An Improved Conference-Key Agreement Protocol with Forward Secrecy 279

Step 1.2. Secret distribution and commitment. Upon receiving all(Tj , Aj , Bj) (1 � j �
n, j �= i), each participantUi checks that eachTj is really issued byUj , i.e.,

checks whethergH(Tj ,M) = y
Aj

j A
Bj

j mod p holds.Ui also validates whetherTj

is a generator of subgroupGq by checking2 � wj � p − 1 andwq
j mod p = 1

(Menezeset al., 1997). If two checks do not hold,Ui claims and broadcasts the
message “Uj is faulty”. If there is any participantUj tries to send wrongTj , the
participantUj is setted as a malicious participant and is deleted from the initial
participant setU . If two checks hold, each participantUi randomly selectsRi and
Ki in Zq, andSi ∈ Z∗

q . Then,Ui constructs a polynomialhi(x) (over Zq) with

degreen that passes points(j, (TRi
j mod p) mod q), (1 � j � n), and(0, Ki).

Ui computes and broadcasts the following:

ωij = hi(n + j) mod q, 1 � j � n,

αi = gRi mod p,

γi = gSi mod p,

δi = S−1
i

(
H(Ki, M) − γixi

)
mod q.

Step 2. Subkey computation and verification. Upon receivingωjl, 1 � l � n, andαj ,
each participantUi uses his short-term secret keyti to reconstruct the polyno-
mial h′

j(x) (over Zq) with degreen that passes points(n + l, ωjl), 1 � l � n,
and (i, (αti

j mod p) mod q). Let K ′
j = h′

j(0) mod q. Then,Ui checks whether

gH(K′
j ,M) = y

γj

j γ
δj

j mod p holds or not. If it holds,Ui broadcasts “Vij =
success”. Otherwose,Ui broadcasts “Vij = failure”.

4. Discussions

In this section, we show that the improved protocol is secure against passive attacks and
impersonator attacks. Note that in the improved protocol each participantUi increases
the broadcast messages(Ti, Ai, Bi) in the Step 1.1 than Tzeng’s protocol. Thus, we dis-
cuss only that the increased broadcast messages will not affect the security of Tzeng’s
protocol.

A. Security Against Passive Attacks

If a passive attacker is unable to obtain the established common key by eavesdropping
messages transmitted over the broadcast channel, the conference-key agreement protocol
is secure against passive attacks. Since an eavesdropper does not know secretsxi and
Ki of any participantUi, the attacker’s view of the messages broadcast byUi on the
broadcast channel can be simulated without knowing secretsxi andKi. To prove this,
Tzeng’s protocol adopts a variant Diffie–Hellman decision problem (Tzeng, 2002a) to
show that the simulator of the attacker’s view is computationally indistinguishable from
the real one.
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In the improved protocol, each participant increases the broadcast messages
(Ti, Ai, Bi) in the Step 1.1. Therefore, we show that, the real view(Ti, Ai, Bi, ωi1, ωi2,

. . . , ωin, αi, γi, δi) and the attacker’s view(T ′
i , A

′
i, B

′
i, ω

′
i1, ω

′
i2, . . . , ω

′
in, α′

i, γ
′
i, δ

′
i) on

random variablest′i ∈ Z∗
q , v′i ∈ Z∗

q , B′
i ∈ Zq, ω′

ij ∈ Zq (1 � j � n), R′
i ∈ Zq,

S′
i ∈ Z∗

q , δ′i ∈ Zq, are computationally indistinguishable, whereT ′
i = gt′i mod p, A′

i =
gv′

i mod p, α′
i = gR′

i mod p andγ′
i = gS′

i mod p. By probability argument, since for
any Ai0 ∈ Gq − {1} andBi0 ∈ Zq, we havePr[Ai = Ai0, Bi = Bi0] = Pr[A′

i =
Ai0, B

′
i = Bi0] = 1

q(q−1) . For any fixedAi0 andBi0, Ti is fixed, sayTi0. Thus, we need
to consider two probability distributions

Pr
[
(ωi1, ωi2, . . . , ωin, αi, γi, δi)|Ai = Ai0, Bi = Bi0

]

= Pr
[
(ωi1, ωi2, . . . , ωin, αi, γi, δi)|Ti = Ti0

]

and

Pr
[
(ω′

i1, ω
′
i2, . . . , ω

′
in, α′

i, γ
′
i, δ

′
i)|A′

i = Ai0, B
′
i = Bi0

]

= Pr
[
(ω′

i1, ω
′
i2, . . . , ω

′
in, α′

i, γ
′
i, δ

′
i)

]
.

From the above discussions, therefore we only have to consider the real view
(ωi1, ωi2, . . . , ωin, αi, γi, δi) and the attacker’s view(ω′

i1, ω
′
i2, . . . , ω

′
in, α′

i, γ
′
i, δ

′
i) are

computationally indistinguishable. In fact, the above problem is the same as one in
Tzeng’s protocol, refer to (Tzeng, 2002a) for the details of the poof.

B. Security Against Impersonator’s Attacks

For impersonator’s adaptively chosen message attacks, it means that a malicious adver-
sary wants to impersonate the legal participantUi even if the broadcast channel is not au-
thenticated. In provable security, the random oracle model (Bellare and Rogaway, 1993)
is usually adopted to demonstrate the security of key establishment protocols or signa-
ture schemes. Thus, we will show the improved protocol is secure against impersonator’s
adaptively chosen message attacks under the random oracle model. In the improved pro-
tocol, each participantUi broadcasts two sets of messages(Ti, Ai, Bi) in the Step 1.1 and
(ωi1, ωi2, . . . , ωin, αi, γi, δi) in the Step 1.2. In Tzeng’s protocol, messages broadcasted
by Ui are (ωi1, ωi2, . . . , ωin, αi, γi, δi), which are proved “existentially un-forgeable”
against the adaptively chosen message attack. Thus in the improved protocol each partic-
ipant uses the short-term public keyTi to distribute the sub-key, it is needed to show that
no malicious adversary is able to forge the validTi.

Theorem 1. Any malicious adversary E, who can not compute the valid Ti of any legal
user Ui in the random oracle model assuming that the discrete logarithm problem is
intractable.

Proof. The proof follows from that in (Pointcheval and Stern, 1996) directly. Suppose
that a malicious adversaryE can impersonateUi to sign(Ti, M) with a non-negligible
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probabilityε. Under the random oracle model, the one-way functionH is a true random
function, that is,H(Ti, M) is an independent random variable from(Ti, M). Thus, by a
probability argument, the malicious adversaryE can sign the messages(Ti, M) to gen-
erate two valid signatures(Ai, Bi, h) and(Ai, B

′
i, h

′) with a nonnegligible probability,
whereAi = gvi mod p, Bi = v−1

i (h − Aixi) mod q, B′
i = v−1

i (h′ − Aixi) mod q,
and h and h′ are two hash values ofH(Ti, M) under the random oracle model. It
is easy to see that since random numbervi is used twice, the malicious adversary
can compute the secret keyxi using two equationsBi = v−1

i (h − Aixi) mod q and
B′

i = v−1
i (h′ − Aixi) mod q, which is a contradiction.

C. Forward Secrecy

In the following theorem, we show that the improved protocol provides forward se-
crecy under the assumption that computing the discrete logarithm problem is difficulty
(Menezeset al., 1997).

Theorem 2. Under the difficulty of computing the discrete logarithm problem, the im-
proved protocol provides forward secery.

Proof. Without loss of generality, letU = {U1, U2, . . . , Un} be the set of participants
and they have established a conference keyK at some past timeτ . The conference key
K is composed of all participants’ sub-keysKi (1 � i � n), asK = (K1 + K2 + · · ·+
Kn) mod q. And eachKi is distributed to other participantsUj , (1 � j � n) using their
short-term public keysTj = gtj mod p. Therefore, it is necessary to obtain the short-
term secrettj . But in the following, we will show that even if an adversary with knowing
xj is unable to obtaintj . First, the adversay tries to gettj from Tj = gtj mod p directly,
it is clear that the adversay must face the difficulty of computing the discrete logarithm
problem. Suppose that some participantUj ’s secret keyxj is compromised at timeτ +1,
and an adversary knowingxj tries to learn the established conference keyK at timeτ .
SinceTj = gtj mod p, Aj = gvj mod p, andBj = v−1

j (H(Tj , M) − Ajxj) mod q,
the adversary may usexj to learnvj but nottj , becausetj does not involved inBj =
v−1

j (H(Tj , M) − Ajxj) mod q.
On the other way, the adversary with knowingxj tries to obtainKj from (γj , δj),

whereγj = gSj mod p andδj = S−1
j (H(Kj , M) − γjxj) mod q. It is easy to see that

δj has two other unknown variablesSj andKj . Therefore, it is necessary to obtain the
random valueSj . But the adversay tries to getSj from γj = gSj mod p directly, he/she
also faces the difficulty of computing the discrete logarithm problem.

5. Performance Analysis

A new round is initiated each time when any number of participants needs to provide
additional pieces of information to aid other participants for their key computation. Thus,
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a round can be a participant forwarding a piece of information to another participant
or many participants simultaneously broadcasting a piece of information to others. In
this sense, Tzeng’s original protocol (Tzeng, 2002a) requires only one simultaneously
broadcasting round for each participant. In the improved protocol, an extra broadcasting
round is required. Nevertheless, the improved protocol requires only constant rounds.

Let us consider the size of messages sent by each participant in the improved protocol.
Each participantUi broadcasts two sets of messages(Ti, Ai, Bi) in the Step 1.1 and
(ωi1, ωi2, . . . , ωin, αi, γi, δi) in the Step 1.2, respectively. In Tzeng’s protocol, messages
broadcasted byUi are(ωi1, ωi2, . . . , ωin, αi, γi, δi). Therefore, the size of extra broadcast
message is2|p|+|q|. Note that in both protocols, the size of messages that each participant
sends is still proportional to the number of participants.

6. Conclusions

The improved protocol remains the merits of the original protocol with round efficiency
and fault-tolerance. Under the same assumption of the variant Diffie–Hellman decision
problem, we have shown that the improved protocol is secure against passive attacks. It
is provably secure against impersonator attacks under the random oracle model. Further-
more, we have shown that the improved protocol offers forward secrecy, while Tzeng’s
protocol does not provide this property.
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Modifikuotas konferencijos rakto generavimo protokolas, tenkinantis
išankstinio saugumo s↪alyg ↪a

Yuh-Min TSENG

Tseng’as pasīulė konferencijos rakto generavimo protokol↪a. Straipsnyje parodyta, kad šis
protokolas neužtikrina išankstinio saugumo (forward secrecy). Sakoma, kad konferencijos rakto
generavimo protokolas tenkina išankstinio saugumo reikalavim↪a, kai bet kurio konferencijos da-
lyvio privataus rakto sukompromitavimas neturi↪itakos konferencijos rakto saugumaui. Straipsnyje
pasīulytas modifikuotas Tseng’o protokolas, tenkinantis išankstinio saugumo s↪alyg ↪a. Atlikta modi-
fikuoto protokolo atsparumo↪ivairi ↪u atak↪u atžvilgiu analiże.


