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Abstract. Recently, Tzeng proposed a provably secure and fault-tolerant conference-key agreement
protocol. It requires only a constant number of rounds to establish a conference key among all
honest participants. This article will show that Tzeng’s protocol does not offer forward secrecy. We
say that a conference-key agreement protocol offers forward secrecy if the long-term secret key of
any participant is compromised and will not result in the compromise of the previously established
conference keys. This property is important and has been included in most key agreement protocols
and standards. In this paper, an improvement based on Tzeng’s protocol is proposed and it achieves
forward secrecy. Under the Diffie—Hellman decision problem assumption and the random oracle
model, we show that the proposed protocol can withstand passive attacks and is secure against
impersonator’s attacks. The improved protocol requires a constant number of rounds to compute a
conference key. The improved protocol provides fault-tolerance.
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1. Introduction

With the growth of network technologies, many group communication services have be-
come the focus of future developments, such as tele-conferencing, collaborative works,
and secure group communications. Efficient and secure conference-key establishment
protocol design is a critical issue in providing security services for group communications
over insecure channels. There are two well-known kinds of conference-key establishment
protocols: conference-key distribution and conference-key agreement. In conference-key
distribution protocols (Anzait al., 2001; Hwang and Yang, 1995; Tseng and Jan, 1999),
there is a chairman who is responsible for generating and securely distributing a con-
ference key to other participants involved in a conference. A conference-key agreement
protocol (Bressoret al., 2002; Burmester and Desmedt, 1994; Horng, 2001; Steiner

al., 2000; Tzeng, 2002a) involves all participants cooperatively establishing a common
key without a chairman. One advantage of a key agreement protocol over a key dis-
tribution protocol is that no participant can predetermine the common key. In the past,

“This research was partially supported by National Science Council, Taiwan, R.O.C., under contract no.
NSC92-2213-E-018-014.



276 Y--M. Tseng

many conference-key agreement protocols have been proposed. These protocols are clas-
sified into two kinds: authenticated (Bressaral., 2002; Burmester and Desmedt, 1994;
Tzeng, 2002a) and non-authenticated (Horng, 2001; Stetrar, 2000). Since a non-
authenticated conference-key agreement protocol does not provide participant authenti-
cation, it is only suitable for an authenticated network channel. Generally, an authenti-
cated conference-key agreement protocol is more flexible for various system models and
requirements.

Conference-key agreement protocols are designed for various types of network con-
nection, such as the broadcast connection, the ring connection or the tree connection,
etc.. One notable result was presented by Burmester and Desmedt (1994). They proposed
several key agreement protocols based on various types of network connections. Funda-
mentally, their non-authenticated key agreement protocol under the broadcast channel is
quite efficient requiring only two rounds. However, their improved key agreement proto-
col with participant authentication (protocol 7) uses a sequential proof for authenticating
participants. Thus, the number of rounds required in the authenticated protocol is propor-
tional to the number of participants.

Recently, Tzeng (2002a) proposed a provably secure and fault-tolerant conference-
key agreement protocol based on the broadcast channel. Fault tolerance means that even
if there are many malicious participants attempting to disrupt the conference-key estab-
lishment, all other honest participants can compute the common conference key. It uses
two rounds to compute a conference key. The number of rounds is independent of the
number of participants. It is provably secure against passive attacks and impersonator’s
attacks under the variant Diffie—Hellman decision problem assumption (Boneh, 1998) and
the random oracle model (Bellare and Rogaway, 1993), respectively. However, Tzeng's
protocol has a weakness that it does not offer forward secrecy.

Forward secrecy means that the compromise of a long-term key(s) cannot result in the
compromise of previously established conference keys. In the following, an attack sce-
nario is described to explain the practical significance of forward secrecy. Although the
probability that a malicious attacker obtains a legal participant’s secret key is small, the
malicious attacker could obtain any legal participant’s secret key with higher probability
as the time passes in the future. When the conference is significant and the conference
contents must be kept secret until a special time, if the conference key is compromised
and the encrypted messages will be revealed before the time is ripe, it could cause seri-
ous damage or do harm to others. Since a network or Internet is an open communication
channel, eavesdroppers can intercept the transmitted messages over the open communi-
cation channel. Suppose that a malicious eavesdropper records all transmitted messages
in conference-key establishment phase, while he also records all broadcast encrypted
messages among participants in conference-session phase. If a conference-key establish-
ment protocol does not provide forward secrecy, a malicious attacker could reveal the
encrypted messages of a secure conference in the future. For security robustness, this
property is very important and has been included in most key-agreement protocols (Bres-
sonet al., 2002; Burmester and Desmedt, 1994; Horng, 2001; Stefratr, 2000; Tseng,

2002) or standards (ANSI X9.63, 2001; IEEE Std 1363, 2000).
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In this paper, we will present how Tzeng'’s protocol is unable to provide forward se-
crecy. To remedy this weakness, based on Tzeng’s protocol, we propose an improvement
with forward secrecy, while it remains the merits of the original protocol. The improved
protocol requires a constant number of rounds to compute a conference key. The im-
proved protocol also provides fault-tolerance.

2. Brief Review and Security Analysis of Tzeng’s Protocol

In this section, we briefly review Tzeng's fault-tolerant conference-key agreement pro-
tocol (Tzeng, 2002a). Afterwards, we present that this protocol does not offer forward
secrecy.
The system has the following public parameters:
e ¢ —alarge prime;
e p—alarge prime such that= 2q + 1;
e G, —asubgroup of quadratic residuesip, that isG, = {i*|i € Z};
e g —agenerator for the subgrodf,;
e H —a one-way function fronx, to Z,.
Meanwhile, each user in the system has the following:
e 1; —U,’s secret key and a random vaIueZg;
e y, —U,’s public key such thay; = ¢* mod p.
In this protocol, assume that there is an initiator calling for a secure conference with
n participants. Without loss of generality, I8t = {U1, Us, ..., U, } be the initial set of
participants that want to generate a conference key. Bach < i < n, knows the set
U. EachU; holds and agrees a messdgeto deter the replay attack (Tzeng, 2002b).
Sep 1. Secret distribution and commitment. Initially, each participant; randomly se-
lectsR; and K; in Z,, andS; € Z;. Then,U; constructs a polynomidl; (z) (over
Z,) with degreen that passes poinig, (yfi mod p) mod ¢), (1 < j < n), and
(0, K;). U; computes and broadcasts the following:

wij =hi(n+j)modg, 1<j<n,
a; = g" mod p,
7 = ¢ mod p,
0; = Si_l(H(Ki,M) — 'yl-xi) mod gq.

Step 2. Subkey computation and verification. Upon receivingw;;, 1 < I < n, and
a;, each participant/; uses his secret key; to reconstruct the polynomial
R’ (x) (over Z,) with degreen that passes pointgr + l,w;), 1 < I < n,
and (4, (" mod p) mod ¢). Let K = h/;(0) mod ¢. Then,U; checks whether
g EGM) - — y}"yjj mod p holds or not. If it holds,U; broadcasts Vi; =
success”. Otherwosel; broadcastsV;; = failure”.
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Sep 3. Fault detection. We omit the detail description here. If any fault is detected, all
honest participants must restart the protocol by deleting malicious participants from
the set/ = {Uy,Us,...,Uy,}.

Sep 4. Conference-key computation. We denote that the final valid participant $&tis
U ={U;1,Usp,..., Uy}, wherem < n and the equality denotes that no fault is
detected. Each participafit may compute the conference key

K = (K}, + Kiy +---+ Kj,,) mod q.

In the following, we present that the above protocol cannot offers forward secrecy. If a
malicious user knows the secret key of any participant;, the malicious user may
compute all established conference-keys participate@ hySuppose that a malicious
user intends to record all broadcast messages in the open network. Assume that in the
past a participant/; has ever participated in a conference. Since the malicious user
knows the secret key; of the participant/;, the malicious user uses the recorded mes-
sagesw;;, 1 < I < n, anda; to reconstruct the polynomidl’ (x)(overZ,) with de-
green that passes point& + [, w;;),1 < I < n, and (i, (o]’ mod p) mod g), then
computel; = h’(0) mod g. Thus, he may obtain all subkeys;,1 < j < n, and

K = (K[, + K|, + ... + K|,,) mod ¢. This is because each participant in a conference
uses “ephemeral” public keys of other participants to distribute the subkey. Therefore, all
previously established conference-keys participated;twill be disclosed if a malicious

user knows the secret key of participantl;.

3. The Improved Protocol with Forward Secrecy

Here, we present an improved protocol based on Tzeng'’s protocol. The improved proto-
col with forward secrecy uses a temporary public key to distribute sub-keys, thus even
the disclosure of the participant’s secret key will not result in the compromise of pre-
viously established conference keys. In the improved protocol, the system model and
security assumptions are the same as ones of Tzeng's protocol. Only Steps 1 and 2 in
Tzeng's protocol need to be modified, and Steps 3 and 4 remain unchanged. The detailed
modifications are presented as follows.
Sep 1.1. Temporary public-key distribution. Initially, each participant randomly selects
a short-term secret keys € Z; and an integer; € Z;, and then computes and
broadcasts the following:

T; = g" mod p,
A; = g% mod p,
B; = v;l(H(Ti, M) — Aixi) mod gq.

In fact, (4;, B;, M) can be called as a certificate for the temporary publickey
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Step 1.2. Secret distribution and commitment. Upon receiving al(7};, A;, B;) (1 < j <
n, j # 1), each participant/; checks that eacli; is really issued byU;, i.e.,
checks whetheg (T5-M) — y;‘j Af" mod p holds.U; also validates whethéf;
is a generator of subgroug, by checking2 < w; <Kp-—1 andw;? mod p =1
(Menezest al., 1997). If two checks do not hold/; claims and broadcasts the
messageU; is faulty”. If there is any participant/; tries to send wrond’;, the
participantU; is setted as a malicious participant and is deleted from the initial
participant selU. If two checks hold, each participabt randomly select®; and
K;in Z,, andS; € Z;. Then,U; constructs a polynomidli,(x) (over Z,) with
degreen that passes pointg, (TjRi mod p) mod ¢), (1 < j < n), and(0, K;).
U; computes and broadcasts the following:

wij =hi(n+j)modg, 1<j<n,
a; = g™ mod p,
i = g% mod p,

Step 2. Subkey computation and verification. Upon receivingu;;, 1 < I < n, anda;,
each participanU; uses his short-term secret keyto reconstruct the polyno-
mial 1;(z) (over Z,) with degreen that passes point@ + l,w;), 1 < I < n,
and (i, (oz;i mod p) mod q). Let K = h}(0) mod ¢. Then,U; checks whether
gHUIGM) - — y}w]‘.sj mod p holds or not. If it holds,U; broadcasts Vi; =
success”. Otherwosel; broadcastsV;; = failure”.

4. Discussions

In this section, we show that the improved protocol is secure against passive attacks and
impersonator attacks. Note that in the improved protocol each participaincreases

the broadcast messagés, A;, B;) in the Step 1.1 than Tzeng'’s protocol. Thus, we dis-
cuss only that the increased broadcast messages will not affect the security of Tzeng'’s
protocol.

A. Security Against Passive Attacks

If a passive attacker is unable to obtain the established common key by eavesdropping
messages transmitted over the broadcast channel, the conference-key agreement protocol
is secure against passive attacks. Since an eavesdropper does not knowzseandts

K; of any participant/;, the attacker’'s view of the messages broadcastpbgn the
broadcast channel can be simulated without knowing segteasd K;. To prove this,
Tzeng's protocol adopts a variant Diffie—Hellman decision problem (Tzeng, 2002a) to
show that the simulator of the attacker’s view is computationally indistinguishable from
the real one.
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In the improved protocol, each participant increases the broadcast messages
(T;, A;, B;) in the Step 1.1. Therefore, we show that, the real @y A;, B;, w;1,w;2,
..., Win, &4, Vi, 0;) and the attacker’s vieWT, A;, Bl,wl,,wiy, ... ,wh,, ok, i, ;) on

random variables; € Z;, v; € Zy, B} € Zg, wi; € Zy (1 < j < n), R} € Z,,

S; € 7,0, € Z,, are computationally indistinguishable, whéfe= g% mod p, A} =
g% mod p,a} = g™ mod p andy, = ¢° mod p. By probability argument, since for
any Ao € G, — {1} and B,y € Z,, we hav®r[A; = Ao, B; = B = Pr[4] =
Ao, Bl = Byo] = ﬁ For any fixedA;, and B;o, T; is fixed, sayl}. Thus, we need
to consider two probability distributions

Pr [(Wilawi% cee s Win, iy iy 03)[Ai = Ao, By = Bm]
= Pr [(wi1, Wiz, - - -, Win, @, 71, 0:)| Ty = Tio

and

Pr [(wgl,wb, s awgm a/iv’%’(%”Ag = Ajo, Bz/' = BiO}

=Pr [(wgl,wg% e Wi a;,’yg,éz’-)].

From the above discussions, therefore we only have to consider the real view
(wi1,wia, - - - ywin, @, Y, 0;) and the attacker's viewWw!,,wl,, ..., wi,,, ok, i, 8;) are

computationally indistinguishable. In fact, the above problem is the same as one in
Tzeng’s protocol, refer to (Tzeng, 2002a) for the details of the poof.

B. Security Against Impersonator’s Attacks

For impersonator’s adaptively chosen message attacks, it means that a malicious adver-
sary wants to impersonate the legal particiganéven if the broadcast channel is not au-
thenticated. In provable security, the random oracle model (Bellare and Rogaway, 1993)
is usually adopted to demonstrate the security of key establishment protocols or signa-
ture schemes. Thus, we will show the improved protocol is secure against impersonator’s
adaptively chosen message attacks under the random oracle model. In the improved pro-
tocol, each participarif; broadcasts two sets of messagEs A;, B;) in the Step 1.1 and

(wi1, wia, - - -y win, @4, Y4, 0;) In the Step 1.2. In Tzeng’s protocol, messages broadcasted
by U; are (w;1,wsa, - - - ,win, @4, 7, 0;), Which are proved “existentially un-forgeable”
against the adaptively chosen message attack. Thus in the improved protocol each partic-
ipant uses the short-term public k&yto distribute the sub-key, it is needed to show that

no malicious adversary is able to forge the v&lid

Theorem 1. Any malicious adversary F, who can not compute the valid T; of any legal
user U; in the random oracle model assuming that the discrete logarithm problem is
intractable.

Proof. The proof follows from that in (Pointcheval and Stern, 1996) directly. Suppose
that a malicious adversaly can impersonaté’; to sign(7;, M) with a non-negligible
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probabilitye. Under the random oracle model, the one-way funcfibis a true random
function, that is,H (T}, M) is an independent random variable fré#, M). Thus, by a
probability argument, the malicious adversdfycan sign the messagé€g;, M) to gen-
erate two valid signaturesd;, B;, h) and(4;, B, k') with a nonnegligible probability,
where A; = g% mod p, B; = v; '(h — Aja;) mod ¢, B} = v;*(h — A;z;) mod g,
and h and b’ are two hash values ol (T;, M) under the random oracle model. It
is easy to see that since random numbglis used twice, the malicious adversary
can compute the secret key using two equation®3; = v[l(h — A;z;) mod ¢ and
B! = v (W — A;x;) mod ¢, which is a contradiction.

C. Forward Secrecy

In the following theorem, we show that the improved protocol provides forward se-
crecy under the assumption that computing the discrete logarithm problem is difficulty
(Menezest al., 1997).

Theorem 2. Under the difficulty of computing the discrete logarithm problem, the im-
proved protocol provides forward secery.

Proof. Without loss of generality, leV = {U,,Us,...,U,} be the set of participants
and they have established a conference Kegt some past time. The conference key
K is composed of all participants’ sub-keks (1 < i< n),asK = (K1 + Ky +---+
K,,) mod ¢. And eachk; is distributed to other participants;, (1 < j < n) using their
short-term public keyd; = g% mod p. Therefore, it is necessary to obtain the short-
term secret;. But in the following, we will show that even if an adversary with knowing
x; is unable to obtain;. First, the adversay tries to gigtfrom 7; = g% mod p directly,

it is clear that the adversay must face the difficulty of computing the discrete logarithm
problem. Suppose that some participélit secret key:; is compromised at time + 1,
and an adversary knowingj tries to learn the established conference ket timer.
SinceT; = ¢% mod p, A; = ¢% mod p, andB; = vj_l(H(Tj,M) — Ajz;) mod g,
the adversary may use; to learnv; but nott;, because; does not involved iB; =
Uj_l(H(Tj7 M) — Ajz;) mod q.

On the other way, the adversary with knowing tries to obtainf; from (v;,d;),
wherey; = g% mod p andd; = S; ' (H(K;, M) — v;z;) mod q. Itis easy to see that
d0; has two other unknown variables and K ;. Therefore, it is necessary to obtain the
random valueS;. But the adversay tries to gét from v; = ¢/ mod p directly, he/she
also faces the difficulty of computing the discrete logarithm problem.

5. Performance Analysis

A new round is initiated each time when any number of participants needs to provide
additional pieces of information to aid other participants for their key computation. Thus,
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a round can be a participant forwarding a piece of information to another participant
or many participants simultaneously broadcasting a piece of information to others. In
this sense, Tzeng’s original protocol (Tzeng, 2002a) requires only one simultaneously
broadcasting round for each participant. In the improved protocol, an extra broadcasting
round is required. Nevertheless, the improved protocol requires only constant rounds.
Let us consider the size of messages sent by each participant in the improved protocol.
Each participantU; broadcasts two sets of messad#és, A;, B;) in the Step 1.1 and
(wit, win, - - -, Win, @4, Y4, 0;) IN the Step 1.2, respectively. In Tzeng's protocol, messages
broadcasted by; are(w;1, wie, . . . ,win, a4, Vi, 0;). Therefore, the size of extra broadcast
message i8|p|+|qg|. Note that in both protocols, the size of messages that each participant
sends is still proportional to the number of participants.

6. Conclusions

The improved protocol remains the merits of the original protocol with round efficiency
and fault-tolerance. Under the same assumption of the variant Diffie—Hellman decision
problem, we have shown that the improved protocol is secure against passive attacks. It
is provably secure against impersonator attacks under the random oracle model. Further-
more, we have shown that the improved protocol offers forward secrecy, while Tzeng’s
protocol does not provide this property.
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Modifikuotas konferencijos rakto generavimo protokolas, tenkinantis
iSankstinio saugumo alyga

Yuh-Min TSENG

Tseng'as pasié konferencijos rakto generavimo protokolStraipsnyje parodyta, kad Sis
protokolas neuZztikrina iSankstinio saugumo (forward secrecy). Sakoma, kad konferencijos rakto
generavimo protokolas tenkina iSankstinio saugumo reikakaviai bet kurio konferencijos da-
lyvio privataus rakto sukompromitavimas netiiaikos konferencijos rakto saugumaui. Straipsnyje
pasilytas modifikuotas Tseng'o protokolas, tenkinantis iSankstinio saugatygas Atlikta modi-
fikuoto protokolo atsparumipairiu ataky atzvilgiu analie.



