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Abstract. Software size is an important attribute in software project planning. Several methods
for software size estimation are available; most of them are based on function points. Albrecht
introduced function points as a technologically independent method with its own software abstrac-
tion layer. However, it is difficult to apply original abstraction elements to current technologies.
Therefore researchers introduced additional rules and mappings for object-based solutions. In this
paper several mapping strategies are discussed and compared. Based on the similarities in com-
pared mappings, a common mapping strategy is then defined. This mapping is then tested on the
reference application portfolio containing five applications. The aim of the test scenario is to eval-
uate the impact of the diverse detail levels in the class diagrams on software size measurement.
Although the question of how to perform quality size measurements in object-oriented projects
remains unanswered, the paper gives valuable information on the topic, supported by mathematics.
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1. Introduction

The success of software projects depends on the decisions that project managers make
in the early phases. Their decisions should be based on provable facts, not on intuition.
One of the fundamental values for project planning is software size. Using software size,
the effort and duration of the project can be calculated so that it has an influence on a
project’s plan and budget. Several methods for software size estimation are in use today.
Most of them have their roots in the Function Point Analysis Method (FPA) introduced
by Albrecht in 1979 (Albrecht, 1979). In this paper, the focus is placed on FPA method
use with object-oriented (OO) projects. Although the FPA method is declared as tech-
nologically independent its usage is more difficult with OO projects. The method’s in-
dependence is based on its own concepts describing a software system. Abstraction of
the software system is gained with a standard separation in two parts: one part considers
the data influence and another part takes into account the functionality of the system.
Data functions are further divided into internal and external logical files assigning differ-
ent weights to each data function type. The transactional functions describe functionality
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through three abstract types namely: external inputs, external outputs and external in-
quiries. The FPA abstraction concept is easily applied to structured analysis and design
artefacts. The mapping of entities, attributes and processes to FPA elements is straight-
forward. With OO design mapping is not that obvious. Therefore, several researchers
proposed additional rules on how to use the FPA method with OO concepts. In the sec-
ond section those rules are compared. Based on their similarities, a unified view on the
rules is presented in mathematical form. The performance of mapping and its influence
on size estimation accuracy is tested on the reference application portfolio containing
five similar applications. In section three, the OOFP method results are compared with
the values of four traditional methods for software size estimation. In addition, the impact
of incomplete class diagrams on measurement is tested. To improve the results for OO
systems, a slight change in the FPA complexity tables is proposed. Towards the end the
difference in measurements on subsequent OO development artefacts is analysed in de-
tail. In the conclusion, the results are summarised and discussed. The goals of the research
are summarised as:

1. Comparison of OO-to-FPA mappings: to compare various authors’ approaches and
find common principles and mapping steps.

2. Formal model definition: in order to automate counting and provide transparency
for the procedure, the mathematical model must be defined.

3. Estimates on early OO artefacts: to use the OOFP method as soon as possible and
test its performance.

4. To measure the impact of incomplete data.

1.1. Mappings of OO Concepts to FPA Concepts

Basically the FPA method is technologically independent, and therefore equally applica-
ble to projects where structured techniques are used as well as those characterised by the
use of OO methods.

In practice, however, it is difficult to apply original rules to OO concepts and arte-
facts. The rules in the FPA manual (IFPUG, 1999) deal only with structured concepts.
Consequently, some researchers have introduced additional rules and mappings of OO
concepts to FPA elements. None of the proposed mappings have become a standard yet.
Table 1 summarises different mapping approaches according to their principal author. Ta-
ble 1 shows that various authors use similar rules to map OO concepts to FPA concepts.
We will describe the main characteristics of each individual method. Deviations that exist
between different mappings are discussed in Section 2.

1.2. Method Proposed by Fetcke et al.

Fetcke (Fetckeet al., 1997) focused their research on a specific method, namely Object-
Oriented Software Engineering (OOSE) (Jacobson and Christerson, 1992). The method
is based on use cases. The authors proposed four groups of rules:

• identification of the counting boundary;
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Table 1

Different approaches for mapping OO concepts to FPA elements

Author

Fetkeet al. Uemuraet al.∗ Ramet al.∗ Antoniol et al.∗
FPA element

Counting
Boundary

Actor – UC
boundary

Actor – UC
boundary

Not identified Not identified

Transactional
Function (TF)

Mapping not uni-
form (it is based
on UCs)

Identified accor-
ding to patterns
of communica-
tion in sequence
diagrams

Method of
the class

Method of
the class

Data
Function (DF)

Domain class, er-
ror message, help

Object with at
least one attribute
that exchanges
data with another
object

Data visible to
every method of
the class

Class or a set of
classes (aggrega-
tion, inheritance)

Data
Element Type
(DET)

Attribute of the
class

Attribute of the
class, attribute of
the super class

Attribute with a
basic type

Attribute with a
basic type, asso-
ciation with car-
dinality one

Record Element
Type (RET)

Aggregation,
abstract class,
subclass (inheri-
tance)

Always one Reference to an-
other object

Reference to ano-
ther object, at-
tribute (complex
type), association
(1:M or M:N),
aggregation

File Type Refer-
enced (FTR)

Object
maintained
or read by UC

Object
in the message
sequence

Does not distin-
guish between
RET and FTR

Does not distin-
guish between
RET and FTR

∗ Only applicable to analysis and design artefacts

• identification of items within the boundary (transactional and data functions);
• identification of theitemtype (DET, RET, FTR) for all items;
• prescribing the weight factors.

The application boundary is set in accordance with the definition of the boundary in
the Use Case (UC) diagram, as defined in the UML standard. Actors are mapped into
users of the system. Use Cases are mapped into transactional functions. This mapping
is not always one-to-one. The number of transactional functions for the particular UC is
usually defined by the UC description. The authors do not provide additional guidelines
on the matter. The reference to the rules of the original method is noted. Since the OOSE
method distinguishes between three types of objects (control, entity and boundary), only
entity objects and objects with unknown types performing a count at the time are used
as data functions. Aggregation and generalisation are treated in a specific way. Both con-



298 A. Živkovič, M. Heričko, B. Brumen, S. Beloglavec, I. Rozman

cepts can have a significant impact on the number of data elements types, record element
types and file types referenced, respectively.

1.3. Method Proposed by Uemura et al.

Uemura (Uemuraet al., 1999) use class and sequence diagrams as sources for OO-FPA
mapping. The mapping is specified for diagrams developed in design that conduct de-
sign specification. The system boundary is identified according to the messages in the
sequence diagrams. The messages sent by actors to non-actor objects represent the sys-
tem boundary. Basically, the rule is the same as defined in the UML standard (OMG,
2001) the only difference is the diagram from which the boundary is identified. We can
simplify this rule to become consistent with the rule used by Fetcke (Fetckeet al., 1997).
Under the presumption that each sequence diagram is directly related to one UC in the
UC diagram, the boundary can be identified from the UC diagram. Objects with at least
one attribute that have one, or more methods or call methods of other objects are mapped
into data functions. The classes with methods that influence the state of other objects are
mapped to external interface files (EIF). All others are considered as internal logical files
(ILF). Transactional functions are identified according to five different communication
patterns from the sequence diagram. The transactional function type is also identified
from the communication pattern.

1.4. Method Proposed by Antoniol et al.

Antoniol (Antoniol et al., 1999) proposed two methods for estimating size during the
development process. In the early project phase, the use of the original method is pro-
posed. After the design is conducted, the method developed by the authors, called Object-
Oriented Function Points (OOFP), is considered to be more appropriate. The OOFP
method is based on the deliverables of the design phase and takes advantage of the in-
formation available in the class diagrams. With this method, the gap between system
abstraction, used by the FPA method and the abstraction, made with the class diagrams,
is supposed to be resolved. The method provides additional rules with some freedom and
the ability to choose the mapping algorithm in cases where class diagrams exhibit com-
plex class hierarchies. With regard to the aggregation and generalisation/specialisation
associations, the possible mapping choices are:

1. Single Class – each separate class is mapped to the internal logical file.
2. Aggregation – the entire aggregation structure is mapped to a single internal logical

file.
3. Generalisation/Specialisation – classes comprised of the entire path from the root

super-class to each leaf sub-class are mapped into the single internal logical file.
4. Mixed – a combination of the second and third option.

The number of attributes and associations for other classes are used to define internal
logical file complexity. To distinguish between data element types and record element
types, a simple but indistinct rule is used. The complex data types are classified as a
record element types and simple or primitive data types as data element types.
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Transactional functions are identified according to the methods in the class. The au-
thors call them service requests. Abstract methods and inherited methods are ignored.
The method complexity is determined according to the number of parameters and global
variables referenced in the method. Similar as with attributes, the element data type is
used for the classification of data element types, or the file types referenced.

1.5. Method Proposed by Ram et al.

The mapping is basically the same as in the OOFP approach. The function points for each
class are calculated. The number of function points for the class is a sum of its logical
file and transactional functions contribution. The transactional functions contribution is
calculated from the methods; whereas for methods without parameters and with the void
return type, complexity is considered as if it were for one DET. Ramet al.(Ram and Raju,
2000) define additional rules for class complexity classification. These rules are used in
the second step. The class complexity is defined as being low if the class processes less
then 50% of data visible to the class, average if 51 to 70% is processed, and high if
the amount of processed data exceeds 70%. A numerical value is then assigned to the
given complexity and multiplied with the number of function points calculated in the
first step. The final amount is lowered for 10, 40 or 70%, according to its complexity.
The term “data elements which are visible to all methods of a class” used by Ramet
al. (Ram and Raju, 2000) is uncommon since such data elements are called attributes
and are by definition visible in all methods. The term “process the data” also has a weak
definition. Do the get and set methods process the data? If the answer is yes, then the
second step concept fails; otherwise it is difficult to automate steps since a deep insight
into the method’s behaviour must be considered.

2. Comparison of Mappings

Comparing all four mappings we can conclude that Fetckeet al.(1997) and Uemuraet al.
(1999) define “boundary” in the same way. Fetckeet al. (1997) uses UC diagrams as the
reference for boundary identification, Uemuraet al.(1999) uses sequence diagrams. Con-
ceptually, the mapping is the same. However, from our point of view Uemura’s approach
is less applicable for two reasons:

• Sequence diagrams are usually made in combination with the UC. It is uncommon
to draw only sequence diagrams. However, it is not necessary for the sequence di-
agram to have an actor (e.g., associations “include” and “extend”). On the other
hand, one UC can have many sequence diagrams that aggravate boundary identifi-
cation. From the UC diagram, the boundary is directly visible and clearly defined
by the UML standard.

• In the design time it is usually clear what is in the system and what is outside it.
Classes represent the abstraction of the system to be built and are inside the fictive
boundary of the system. In fact setting the boundary at the design time is unneces-
sary, thus it does not influence further steps. Antoniol (Antoniolet al., 1999) and
Ram (Ram and Raju, 2000) choose the same approach.
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All approaches have a united view on data function mapping. The class is mapped to
a logical file. However, the definitions for separation on internal or external logical files
are weak in all four methods. Uemura (Uemuraet al., 1999) uses supplemental rules to
distinguish between two data element types using class operations. Antoniol (Antoniolet
al., 1999) retain original guidelines regarding logical files division. In the OO systems,
external classes encapsulate non-system components, such as other applications, external
services and reused library classes. External classes correspond to external logical files,
Antoniol (Antoniol et al., 1999) says. However, a precise definition on how to count
external classes is missing. Ram (Ram and Raju, 2000) uses Antoniol’s definition. A
mismatch in the element type can have a significant influence on the final result. With
the use of statistical data it is possible to assess the magnitude of that impact and the
corresponding error. Let us assume that the types of some elements were mixed. Eqs. E1
and E2 calculate the element mismatch error. In the Eq. E1, the error for data functions
is calculated.

EDF =
∑

i WILF (Fi)∑
j WILF (FILFj ) +

∑
k WEIF (FEIFk

)
,

NDF = NILF + NEIF ,
(E1)

EEIF =
NEIF

NDF
∗ WEIF (FILF )

WILF (FEIF )
∼= NEIF

NDF
∗ eEIF = 0.185 ∗ 0.3 = 0.0555,

EILF =
NILF

NDF
∗ WILF (FILF )

WEIF (FILF )
∼= NILF

NDF
∗ eILF = 0.815 ∗ 0.44 = 0.3586,

where
NX is the number of classes of typeX,
WX is the weight of typeX,
FX is the data element of typeX,
EX is the error made if all elements of typeX are mismatched with another type,
X = {ILF, EIF}.
To get concrete numbers we need the ratio between data element types. The left graph

in Fig. 1 shows the ratio between FPA elements from the ISBSG repository (ISBSG,
2001) (with 238 projects in the sample) and on the right is the graph for our sample of
eight applications (e.g., see Zivkovicet al., 2003). According to the industrial average,
there are less then 20% of external interface files in the data functions for standalone

Fig. 1. The ratio between FPA elements.
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applications, which have been developed from scratch. If we count all elements as internal
logical files (ILF) the error rate is around 5%. In the opposite case, when we neglect
ILFs, the error rate is 35%. The calculations indicate the use of internal logical files for
all classes. The error rate is minimized. In the next section the suitability of original
complexity tables is discussed in further detail.

In mappings for transactional functions, the gap between approaches is greater. Fetcke
(Fetckeet al., 1997) defines transactional functions according to the UC and their descrip-
tion. Uemura (Uemuraet al., 1999) defines five interaction patterns. Transactional func-
tions are recognised from the sequence diagrams according to the type of the object start-
ing and completing the interaction sequence. Patterns are used to identify transactional
function complexity. Antoniol (Antoniolet al., 1999) uses a term service request instead
of a method, although the methods are actually counted and mapped into transactional
functions. Abstract and inherited methods are not counted. In Antoniol’s (Antoniolet al.,
1999) opinion it is impossible to determine the type of the transactional function from the
class diagrams. The complexity table for external inputs and queries is used. Ram (Ram
and Raju, 2000) also uses methods to determine the number and complexity of transac-
tional functions. Comparing his approach with Antoniol’s, Ram (Ram and Raju, 2000)
is more careful with the inherited methods. If the inherited method overrides a method,
its complexity is considered for that derived class alone. Ram (Ram and Raju, 2000) also
points out that the abstract methods are defined in the derived classes and should be con-
sidered when calculating the complexity of each derived class. Antoniol (Antoniolet al.,
1999) indirectly uses the same rule, although he does not formulate it. Ram (Ram and
Raju, 2000) calculates the complexity of transactional functions in two steps. For the first
step, he uses Antoniol’s (Antoniolet al., 1999) approach of using method’s signature to
determine its complexity contribution. In the second step, (Ram and Raju, 2000) uses its
unique class complexity classification (see Section 2). The Eq. E2 calculates the maximal
error for transactional functions in the same manner E1 does for data functions. Since
external inputs and external inquiries have the same weight, they are treated equally. If
external inputs and external inquiries are both neglected and all transactional functions
are treated as external outputs, error rate could be as high as 16%. If external outputs are
mixed with external inputs or external inquiries, the rate of error is around 7%. The final
numbers are specific for the case presented in the paper and must be recalculated for other
types of applications.

ETF =
∑

i WEI,EQ(Ti)∑
j WEI(TEIj ) +

∑
k WEO(TEOk

) +
∑

l WEQ(TEQl
)
,

NTF = NEI + NEO + NEQ,

EEI,EQ =
NEI,EQ

NTF
∗ WEI,EQ(TEI/TEQ)

WEO(TEI/TEQ)
∼= NEI,EQ

NTF
∗ eEI,EQ (E2)

= 0.67 ∗ 0.25 = 0.1676,

EEO =
NEO

NTF
∗ WEO(TEO)

WEI,EQ(TEO)
∼= NEO

NTF
∗ eEO = 0.33 ∗ 0.2 = 0.066,
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where
NX is the number of classes of typeX,
WX is the weight of typeX,
TX is the transactional function of typeX,
EX is the error made if all transactional functions of typeX are mismatched with

other types,
X = {EI, EO, EQ},
j, k and l can have values from 1 to the number of transactional functions of the

belonging type.
There are slight deviations in the process of data elements identification. In all ap-

proaches, the attributes are the core candidates for data elements. If the attribute type is
simple, the attributes map to a data element type; otherwise into a record element type
for data functions and file type referenced for transactional functions. Antoniol (Antoniol
et al., 1999), Ram (Ram and Raju, 2000) and Fetcke (Fetckeet al., 1997) pay regard to
different kinds of associations that can map to either data element types or record element
types/file types referenced. The rules are different (see Table 1). Only Uemura (Uemura
et al., 1999) set the number of record element types to one for all cases.

In this section, four different mapping approaches have been described and compared.
Since the approaches are similar, in further research we decided to use Antoniol’s (Anto-
niol et al., 1999) approach. Ram (Ram and Raju, 2000) uses Antoniol’s approach while
making some changes, other approaches are less precise. The selected approach is sim-
plified for the purposes of this research, using single class strategy for identifying logical
files. Ram’s idea to change the complexity tables is also reconsidered.

3. Test Case and Results

Let us assume that the requirements for a system are given. The OO analysis and design
using UML are used to model the system. The software development process defines
procedures to produce prescribed artefacts. For software size estimation only class dia-
grams are used. During analysis and design the class diagrams change dramatically. Ta-
ble 2 illustrates that change. The table is composed from a well-known software process
framework.

During the requirement engineering in the inception phase, class diagrams are not
available. Use cases are identified and briefly described using natural language. Use Cases
are prioritised and assigned into iterations. In the elaboration phase, initial class diagrams
are conducted during the analysis and then refined in subsequent steps. The result is a
domain class diagram containing operations, attributes, initial hierarchy and associations.
In the design, an architectural style is selected, the domain class model is changed to
reflect architectural properties, a database solution is designed and a presentation tier
is developed. During the implementation, a design class diagrams are implemented and
usually supplemented with additional methods and attributes.

Software size estimation from OO artefacts (UC diagrams) is hard to perform using
the approaches described in Section 2. The first point where size estimation is possible
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Table 2

Selected UML diagrams through the development process

Development process

Inception phase Elaboration phase

Requirements ♦ Initial requirements are captured ♦ Initial UC description is formed

♦ UCs are identified

♦ Priorities for UCs are set

Analysis ♦ Basic domain concepts are identified♦ Initial domain class diagram is conducted

♦ Interaction sequences are outlined

Design ♦ GUI type is set ♦ Complete class diagrams are conducted

♦ Architectural style is defined ♦ Detailed sequence diagrams are available

Implementation ♦ N/A ♦ Class diagrams are improved

is in the elaboration phase, when the initial domain class diagrams are available. Table 3
shows different levels of detail for selected UML diagrams through the inception and
elaboration phase. Three levels of detail are defined. The incomplete level of detail means
that some UML element is missing (e.g., class, attribute, method) due to incomplete re-
quirements capture process or partial artefacts. The error resulting from incomplete dia-
grams is not measured. The initial level of details represents the complete artefacts with
some data missing (e.g., data and return types, parameters). The complete level of de-
tails means that all the expected data are present. In our research, a reference test case
defined by Fetcke (Fetcke, 1999b) was used to test the influence of the level of detail
in the class diagrams to accuracy of the mapping. The chosen test case is referenced in
the ISO/IEC TR 14143-3 Verification of functional size measurement methods (ISO/IEC
TR 14143-3, 2003). Software size estimation using OOFP was applied twice. The first
measurement was performed on initial class diagrams, with a complete set of classes,
methods, attributes and associations. However, the method return type, parameters and
their types, attribute types and the association’s multiplicity were missing in this initial
class diagram. The second measurement was performed on the complete domain class
diagram. The measurement process was automated using the formal OOFP model. The
calculation procedure can be formalised using a generalised structure notation (Fetcke,
1999a; Zivkovicet al., 2003).

Table 3

Level of details for selected UML diagrams
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3.1. Formal Model

In general, the software system is composed of different data and transactional types.
The number of data and transactional types, and their attributes, contribute to the size
of the software system. The third component that has an influence on software size is
the technical complexity of the solution. The universal function that maps application
attributes into size is therefore:

FPC(a) =
( ∑

i

FPC1(ti) +
∑

j

FPC2(fj)
)
∗ FPC3(TC), (E3)

where
FPC(a) is the function that maps attributes of the applicationa into software size;
FPC1(ti) is the function that maps transactional typeti into size;
FPC2(fj) is the function that maps data typefj into size;
FPC3(TC) is the function that maps technical complexity of the anticipated solution

for applicationa into a factor.
The total value for an application size is the sum of both parts multiplied by the factor

of the solution’s complexity. The factor can reduce or increase the overall size. However,
it is not clear if the factor actually measures raw application size or is an attribute of
the implementation and should be a part of the function that maps size to effort (Lokan,
2000). That is the reason why in this research, the function FPC3 was not used in any
calculations. The FPC functions for the OOFP method are presented in Eq. E4.

FPC1 = WEI(Nd, Nr), FPC2 = WILF (Nd, Ng),
Nd =

∑
p

S(p), Nd =
∑
k

S(k) +
∑
l

O(l),

Nr =
∑
p

S−1(p), Ng =
∑
k

S−1(k) +
∑
l

O−1(l),

S(p) = 1 ⇒ p = simple type, S−1(p) = 1 ⇒ p = complex type,

S(p) = 0 ⇒ p = complex type, S−1(p) = 0 ⇒ p = simple type,

O(l) = 1 ⇒ lmultiplicity = 1,

O(l) = 0 ⇒ lmultiplicity �= 1.

(a) (b)

(E4)

In the Eq. E4, theWEI andWILF are functions that prescribe the number of function
points according to the FPA element complexity tables. The functionW has two param-
eters. For transactional functions, parameters are the number of data element types(Nd)
and number of file types referenced(Nr). The OOFP method determines the value ofNd,
Nr andNg from the class diagram. The value is calculated differently for transactional
functions(FPC1) and data functions(FPC2). For transactional functions, parameter
Nd is calculated as the sum of values gathered from functionS. The methods of the class
represent the transactional functions, thereforei from Eq. E3 runs from 1 to the number
of methods in the class. The functionS returns 1 if the parameterp of the methodi has
a simple type and 0 in all other cases. The functionS−1 is the opposite function, thus



The Impact of Details in the Class Diagram on Software Size Estimation 305

returns 0 if the parameter type is simple. For data functions, parameterNg is used instead
of Nr, representing the number of record element types. The value ofNd is determined
from the attributes and associations of the class. In Eq. E4b,S is the function that returns
1 if the attributek has a simple type and 0 otherwise. The function O evaluates associa-
tion and returns 1 if the multiplicity of the relation is 1 and 0 otherwise. FunctionsWILF

andWEI are the step functions represented by discrete values with the following range:

WILF = {7, 10, 15},
WEI = WEQ = {3, 4, 6}.

The rules used for functionsW are in accordance with the FPA method.

3.2. Evaluation Process

In the test case, an application portfolio (Fetcke, 1999b) conducted by five applications
was used. All five applications were first converted into the class diagrams. The class
diagram for application W is presented in Fig. 2.

The UML class diagrams were then converted into the XML Metadata Interchange
(XMI) format. To automate the counting procedure, a Java tool was developed that parses
the XMI file and uses parsed information to calculate the size of the software system.
The functional size was measured twice, first on the initial class diagrams and secondly
on the complete diagrams. The results are in Table 4. For the initial measurement (see first
column), the results are zero for all cases. This is due to incomplete specifications, where
none of the attributes or parameter data types are specified. Using the OOFP method the
evaluation of the attributes without their types set is not defined. The possible solution

Fig. 2. Class diagram for applicationW .
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is to treat unknown data types as simple data types. The results are in brackets. With
considerably higher values from the values of the complete estimate we decided to reject
this solution.

The anomaly in Table 4 forced us to reconsider Ram’s (Ram and Raju, 2000) idea
to include zero values in transactional complexity tables. For the OOFP2 test case all
complexity tables were changed to include zero values. The complexity table for trans-
actional functions was also changed to reflect the average number of parameters in the
method. Lorenz (Lorenz and Kidd, 1994) reported measuring 0.7 parameters per method
in Smalltalk projects. The value is specific for Smalltalk since in Smalltalk all the at-
tributes are private. As a result, getter/setter methods influence the average values having
zero or one parameter. We can argue that in modern programming languages such as Java
and C# the same result is expected since C# introduces properties and Java recommends
a JavaBean pattern. In the JavaBean pattern, all the attributes are accessed through get-
ter/setter methods. Table 5 shows the changed values. Consequently the W functions are
different. The results of the measurements are in Table 6.

In the column labelled OOFP, measurement values for the initial and complete speci-
fication is shown. Original FPA tables were used in the calculations. Results in thecom-
pletecolumn are noticeably low. At least one data element type must be present for every
method to rate it with low complexity and assign non-zero function points. The same is
valid for logical files. Therefore, we introduce changes in the complexity tables to include
a zero value and a lower complexity interval. The results are marked with OOFP2 and
can be found in the second column. The remaining columns are shown for reference and
are from the original document (Fetcke, 1999b).

Table 4

Application size in FP for the test case

OOFP

Initial Complete
Application

W 0 (95) 33

M 0 (60) 16

C 0 (84) 27

LC 0 (83) 30

LS 0 (51) 16

Table 5

OOFP2 complexity table for transactional functions

0–4 DET 5–10 DET More than 10 DET

0 or 1 FTR Low Average High

2 FTR Average Average High

3 or more FTR Average High High
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Table 6

Measurement results

OOFP OOFP2

Initial Complete Initial Complete
Application

IFPUG
FPA 4.1

Mk II
FPA

FFP 1.0
COSMIC

-FFP

W 0 (95) 33 51 83 77 72.96 102 81

M 0 (60) 16 35 46 40 32.40 52 38

C 0 (84) 27 35 65 49 46.72 65 51

LC 0 (83) 30 43 71 56 48.96 71 52

LS 0 (51) 16 27 37 31 24.00 41 29

3.3. Statistical Evaluation of the Results

In the test case with reference examples, the standard deviation (σ) between the results
of measurements on incomplete and complete class diagrams using the OOFP2 method
is 9.69 function points. Performing estimates on incomplete class diagrams may result in
a 16% additional error. The maximum error was 29% and the minimum 7%. Student’s
t-Test helps us explain the results from Table 7. Table 7 shows the results of the Student’s
t-Test for the OOFP2 method. The first test, shown in the column labelled OOFP2-I,
proves the hypothesis that initial estimates using incomplete class diagrams are signifi-
cantly different from the estimates performed on complete class diagrams. The second
test compares the performance of the original OOFP method using the FPA complexity
tables with the OOFP2 method. The results in the column labelled OOFP-C again prove
the hypothesis that tables with lowered values for the number of data types needed to
reach the same number of function points, give significantly different results. However, it
is difficult to conclude which result is better. Therefore, the results of the OOFP2 method
are compared with the results of traditional methods. The results in columns three, four,
five and six confirm the hypothesis, that OOFP2 gives a comparable result with all tradi-
tional FPA-based methods. None of thet-Test results show a significant difference in the
values calculated with traditional methods in comparison with the values calculated with
OOFP2 method.

With the use of Eqs. E3, E4 and the complexity tables, further analysis of the OOFP
mapping is possible. The Eq. E5 expresses the number of function points for a class as a

Table 7

Student’st-Test results

OOFP2-I OOFP-C IFPUG FPA 4.1 Mk II FPA FFP 1.0 COSMIC-FFP

t-Test 0.044 0.004 0.417 0.230 0.674 0.425

stdev 15.1 14.4 18.1 18.8 21 19.2
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function.

FPCclass = WILF (Nd, Ng) +
n∑

i=0

WEI(Nd, Nr),

MIN(FPCclass) = 7 + Nmethods ∗ 3 = 7 + Nmethods ∗ 3, (E5)

MAX(FPCclass) = 15 + Nmethods ∗ 6.

To evaluate the impact of the missing data in the requirements (e.g., data types, multi-
plicity, method parameters), the MIN and MAX functions are used. The function MIN
returns a minimal value of function points for a class. The data functions contribution is
simplified, thus it can have only three values. The value is set to 7 and is valid for cases
where attributes do not have their data types set and association multiplicity is unknown.
The sum of all attributes and associations do not exceed 19. The contribution of the trans-
actional functions depends on the number of methods in the class. The average number
of methods in the sample of 14 applications using different programming languages pro-
vided by Hericko (Hericko, 1998) is 11. Therefore, the minimum size for a class with the
average number of methods is 40 FP. The MAX function returns the maximum possible
value considering the number of methods. Using the average number of methods in a
class, the size is 81 FP. With 50% the maximum difference is quite high. These results
must be interpreted with caution, however, since values represent the complete interval.
In the reference examples, the average difference is much lower, around 16%. In the
ISBSG repository (ISBSG, 2001) containing data for 345 diverse software projects, the
average project size is 535 FP. The 16% estimate error can be converted to the effort in
person hours for different platforms and language combinations. In the future, the repos-
itory data will be used to improve early estimates and a principle of self-learning will be
introduced into software-size estimations. Several class diagram abstraction levels will
be defined and merged with the software development process to indicate points where a
method that will result from the research can be used.

4. Conclusion

With new programming languages like Java and C# the need to provide the standard
OO-to-FPA mapping becomes even more important. In this paper, important existing
OO-to-FPA mappings were compared. The existing mappings are similar, each having
some specifics. In our research we have defined a common mapping based on the exist-
ing OO-to-FPA mappings. The approach we proposed is based on class diagrams, thus not
applicable during requirement gathering in the early project phases. It could be used after
the initial class diagram is composed. Two distinct sources of inaccuracy in the data used
for size estimations were identified. The data in the class diagrams may be incomplete,
in that it does not show all the methods and attributes. This was treated as an incomplete
requirement and was not measured in this research. The second situation arises when all
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the requirements are captured with different levels of detail. The research on the refer-
ence test case showed that a lack of data in the class diagrams significantly influences the
estimation accuracy regardless of the complexity tables used in the measurement. There-
fore the OOFP method is not appropriate for use during early development phases. In our
research a new complexity table for transactional functions was proposed. According to
our test sample, the changed complexity tables give more accurate results on detailed do-
main class models available during the analysis and design than original FPA complexity
tables. Statistical tests also showed that these results are equivalent to the results of four
different industry-leading FPC methods.

In future work, a new method will be created to attempt to get equally good results
during the whole development cycle. To do so, more examples have to be tested to extend
the validity of the new complexity tables across various applications. In addition, the
source of information has to be broadened to include other UML diagrams organized
in models for a specific development phase. Early estimates will be based on repository
containing historical estimates data and a self-learning estimation model.

5. Appendix

Table 8

Hericko’s data set

Programming
language

No. of Classes No. of Methods
Average

No. of methods /class

Delphi (I) 50 521 10.42

Delphi (II) 45 476 10.57

Delphi (III) 38 252 6.63

Smalltalk (I) 167 2371 14.19

Smalltalk (II) 16 161 10.06

Smalltalk (III) 13 99 7.61

Smalltalk (IV) 38 426 11.21

Smalltalk (V) 34 793 23.32

C++ (I) 26 209 8.03

C++ (II) 64 1280 20

C++ (III) 69 483 7

C++ (IV) 78 546 7

C++ (V) 16 112 7

Java 146 1628 11.15
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Klasi ↪u diagramos detalumo ↪itaka programin ės ↪irangos apimties
vertinimui

Aleš ŽIVKOVIČ, Marjan HERǏCKO, Boštjan BRUMEN,
Simon BELOGLAVEC, Ivan ROZMAN

Programiṅes ↪irangos apimtis – svarbus veiksnys planuojant projektus program↪u sistemoms
sukurti. Žinomi keli programiṅes ↪irangos apimties vertinimo metodai; daugumas iš j↪u apimt↪i
vertina panaudodami funkcinius taškus. Funkcini↪u tašk↪u metodas, kaip metodas, nepriklausan-
tis nuo konkrěcios technologijos ir išreiškiamas savarankiško abstrakcijos lygmens terminais,
buvo pasīulytas Albrechto. Tǎciau š↪i abstrakt↪u aparat↪a sunku pritaikyti šiuolaikiṅems technologi-
joms. Toḋel daugelis mokslinink↪u siūlo papildomas taisykles ir atvaizdžius, pritaikytus objektinei
paradigmai.

Šiame straipsnyje aptariamos ir lyginamos kelios atvaizdavimo strategijos. Panaudojant
atskleistus ši↪u strategij↪u panašumus, pasiūlyta bendresṅe atvaizdavimo strategija. Ši strategija buvo
testuota, panaudojant penkis modelinius pavyzdžius. Testavimo scenarijaus tikslas buvo↪ivertinti,
kok↪i poveik↪i programiṅes ↪irangos apimties vertinimui turi klasi↪u diagramos detalumo laipsnis.
Nors objektiṅes program↪u sistemos apimties vertinimo problema ir nebuvo galutinai išspr↪esta, gauti
rezultatai yra vertingas↪inašas↪i jos sprendim↪a.


