INFORMATICA, 1992, Vol.3, No.4, 567-581

OFF-LINE ESTIMATION OF DYNAMIC
SYSTEMS PARAMETERS IN THE PRESENCE
OF OUTLIERS IN OBSERVATIONS ... ..

Rimantas PUPEIKIS .
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Abstract. In the previous papers (Pupeikis, 1990; 1991; 1992) the prob-
lems of model oder determination and recursive estimation of dynamic systems
parameters in the presence of outliers in observations have been considered. The
aim of the given paper is the development, in such a case, of classical off-line al-

.gorithms for systems of unknown parameters estimation using batch processing
of the stored data. An approach, based on a substitution of the corresponding . '
values of the sample covariance and cross-covariance functions by their .,;obu§t
analogues in respective matrices and on a further application of the least square
(LS) parameter estimation algorithm, is wurked out. The results of numerical
simulation by IBM PC/AT (Table 1, 2) are given.
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1. Statement of the problem. By identification and pa-
rameter estimation of real objects it is often assumed that an ad-
ditive noise affecting ti - output of a dynamic system .is Gaussian,
However in many cases this assumption is not valid because of
outliers in the sample data set, used for system parameter estima-
tion. That’s why robust off-line algorithms, based on the calcula-.
tion of M-estimates by processing the whole data set, are worked
out (Novovitova, 1987). It is known, that these algorithms are
iterative, stepwise procedures requiering an inversion of the-cor-
responding matrices at each caiculation step and some respective
initial conditions. On the other hand in this case a robust covari-
"ance analysis and a ordinary classical LS algorithm can be used.
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Consider a single input z; and single output y; linear discrete-
time system described by the difference equation

Y = O Yl Grilbon + 0125t + ...+ bnZion. . (1)

‘Suppose:that y; is observed with an additive noise . i.e.,

up =y + fl:; (2)

then
UL = —GiUp-1 = ... = GpUk-n + l1Zp_1+ ... 3)
+bpzr—n + f; + algl:-l +... anf;-n
or
B -1, o
———l h 4
U = 1+A( _1)2k+W(Z )fk: ) ( )

by ihtroducing the backward shift dper@tér z-1 defined by z-1z; =
Zr_1, where

& = (1= 7)ve + me . (5)

is a sequence of ixildependent identically distributed variables with
an € - contaminated distribution of the form

P(&) =(1- €)N(0 01) + €N(0 %), (6)

p(&‘k) is a probablllty dens1ty dlstnbutxon of the sequence &; i
is a random variable, taking values 0 or 1 with the probabilities
e =1)=¢, p(x =0) = 1—¢; v, n; are sequences of independent
Gaussian variables with zero means and variances ¢?, ¢ respec-
tively,

c?:l(aT‘,bT), GT~'(a1, ,an), bT—(lﬁ,...,b,,), '(7)

i=1 i=1"
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n is the order of difference equation (1), respectively;

& = W b, | )

W(z~%; h) is a noise filter transfer function; h is a parameter vector.

It is assumed that the roots of A(z~!) are outside the unit circle
of the z=! plane. The true orders of the polynomials A(z-1), B(z™!)
are known. The input signal z; is persistent excitation of an arbi-
trary order according to Astrém and Eykhoff (1971)

Here we deal with the estimation of unknown parameters ¢? =
(a7,87) of difference equations (3) or (4) by means of the covari-
ance analysis and an ordinary least squares (LS) algorithm in the
presence of outhers in observations.

2. Parameter estimation in the absence of outliers in
observations. Suppose that ¢ = 0 in equation (6), therefore p(¢x) =
N(0,01). In this case, as it is-shown in Astrém and Eykhoff (1971);
Kazlauskas and Pupeikis (1991) to estimate the vector of unknown
parameters ¢7 = (a¥,bT) multivariate approaches are worked out.
On the other hand, it is known that in the case when

W(ih) = [ A (10)

the ordinary classxcal LS parameter estimation algonthm is used.
Then the vector &7 = (a7,57) of the estimates

=(&1,...,&,‘,), 8T=('51,;..,8")

of the respective parameters (7) is calculated using the classical LS
of the form .

é=(¢70) 07U, | (1)

where

7,_[Pu %12
¢¢_(¢21 ¢gz)’~ ' . .‘(12)
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Ry(0) Ry(l) ... Ru(n-1)

b1 = S (13)
o R.(0)
| R:(0) R:(1) ... Rin-1)
D eme| O BEEDL

R.(0)

are n x iz_, - symmetric submatrices;

-Ru.r(o) ‘Rzu(l) ... =Rg(n— 1)
-_ -Ruz'(l) . ‘Ruz(o) cue —Rﬂ.(n - 2)

b= Gy=| . o : (18)
T \Re(n-1) —Ru(n=2) ... =-Ru(0)
are n >;<jh submatrices. o
~Ry(1)’
T T e —=Ry(n) 16
$U=1p 0 (16)
Rou(n)
is a 2n vecfor;
Reli) = —— (s Deri=8), =07 (17)
are values of the covariance function of input z;;
1 &= — .
Ru(i) = == 3 (ur = D)(up—i = 8),~ i=0,m (18)

=1

are values of the covariance function of output u;;
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s—~1,

Rys(i) = — Z(“k - “)(zk—i - z)a

zu(z) = Z(zk - 2)("1:—: -@), i=0m (19)

k:l o L . )
are valies of cross-covariance funct«xons whxch are calculated usmg
the sequences z; and u; of sample size s;

: s . s
a’::s'lsz,' ~ﬁ=s"1§ uk.
. k=1 k=1

Now let us consider such a case, when the assumption (10) is
invalid. Then the classical LS of the form (11), used to estimate a
vector ¢ = (a7 ,bT) of the unknown parameter of a mathematlca,l
model of the dynamic object (1) — (9), is of little use. :

Let us assume that

i1 L+ PETY ¢ 00
where ' :
AT = @) T = (epny)s 1T = (),
Ny M
(=3 p, R(z 1)—5_:1»" :
i=1 i=1

n, and n, are orders known beforehand of an autoregressive moving
average model (20).

‘ In this case the LS algorithm based on' the covariance analy-

sis displays remarkable properties (Isermann, 1974), therefore this

algorithm can be applied here. Now, if we multiply both sides of

difference equation (3) by z¢--, then we receive an equation of the

form A

qu(T) == aleu(T - 1) - aszu(T - 2) - ‘
— anRou(r =)+ bR (r = 1) +..: +baRe(r = 1) (21)
‘ + Rze(1) + a1 Roz(t = 1) +-... + anRié(T — n),
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where R;¢(-) is the cross-covariance function of z;, &;.
In (21) we choose 7 from the interval

-p1 € 7€ P2,

where p; and p; are determined so, that when 7 < —p; the function
R(7) = const, and when r > p3 — Rzy(7) = const.
Then one can rewrite equation (21) rewrite in such a form

R=V¥c+w, (22) .

where

R = (Rsu(’l’l + ﬂ) . oo R.-,u("l)Rt“(o) te R"‘(pz))T (23)
is a (p1 + p2 — n + 1) vector;

—Ro(~pr+n-1) ... =Ru(~p1) Ro(-pi+n-1)

go| BalD o =Ref-m R
- —R,ufﬂ) ... =Rgy(1-n) " R;(0)
"Rtu('.';h -1) . ‘.- —Rzu(;’Z -n) Rz(p; -1)
| Rz(p1)

!

Rx(."n)
R;(1-n)

(24)
Rz(Pi; —-n)

is a (p1 +p2 — n + 1) x 2n covariance matrix;

w = (Rz¢(=p1 +n)... Rog(~1)Rr¢(0) . - R,g(pg))T

is a (p1 4+ p2 — n + 1) vector. A

It should be mentioned that we determine the values Rzu(—j)in
the matrix (24) using formula (19) and the nonsymmetryc property,
i.e.
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Rou(~5) = Rus(3),

for ] =0m. . )
.Thus, one can obtmn the parameter estxmates vectot m the{
form E it b
. - L e S B el : ;‘;}m_'g\ v i
é=(WTWTWTR. T (25)

8. Parameter estimation in the presence of outliers in
observations. In equation (6) it was assumed that ¢ = 0. Now let
us consider the case when this assumption is invalid. It is known
(Novoviéova, 1987) that in such a case M-estimates ofs unknowu
parameters of linear dynamical systems (1) ~ (10) can be calculated
using three procedures:

1) the S-algorithm

PR P R R : L
-1
eU+1) 3l +_&[ Ed”(eu)/a)‘?(’) T(J)]
R , (26)
[
DRICLLT L
. t=1 . - .

" 2) the H-algorithm

o
. IR L - e ey
Eas =5u)+&[2¢9)¢?€i)] coe e

(2D

0

t=1
"x Z¢(60)/G)¢(J)
3) and the W-algorithm- - - -~ .. -
. . "_'1'_ o
&+1 -co)+,[zw0) G r(:)] o
‘ V t=1 e
X Z¢(CO)/¢)¢(J) . .
=1 ) ) : L

Here
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T(J) = (aT bT)(J) (01, 1&n9 819 cey ER)TU)

are the estimates of parameters (7), which are. cail,culated at the j-th
iteration using the abovementioned algorithms; ¢ is a scale value
of the robust estimate; (e /4) is a y-vector which can be cho-
sen according to Stockinger and Dutter-(1987), Novovi¢ova. (1987),
whereas ¥(v)/v is non-increasing for v > 0 and lim,_p w(v)/o =p3 <
’oo, gb’(e?‘) /o) is the ﬁrst ordex partial derivative of the y(e‘ /a)

. . ).. (-u‘—lv visy ™ Utenli=ly - ’Qt_n) (J),
is the ‘.Yept.grk of n obs,ervations of input -'!?k aq'd'oﬁiput_ i

is a generalized equation error at the j-th iteration;

uf)) {w(e")/a)/eff’ for e # 0
. Jr4 for e =0

The M-estunates, obtained by means of the S—~, H— and W-
algorithms, are sdlutlons of the respective nonlinear equations re-
quiring an mveréxon of the corresponding matrices at each step’
and some initial condltlons Moreover, the problem of stopping
calculatnons of the .M-estimates. will arise here too. That is why
we shall try to use in this case the robust covariance analysis and
an ordinary LS algorithm for parameter estimation. It is known .
(Gnanadesikan and Ket‘t'enring, 1972; Hampel et al., 1989; Hu-
ber, 1984) that equations (17) - (19) give then strongly biased es-
txmates of sample covariance functions and ‘therefore the estimates
= (&7,b7) of the parameters ¢/ = (a”,bT), obtained using the LS
algorxthm will ‘be biased too. In order to increase its efficiency it
1s necessary to replace the respectxve averaging linear operators in
matrices (13), (15), (24) and vectors (16), (23) by their nonlinear
robust analogues according to Pupeikis (1990). For this purpose
the values of the sample covariance and cross-covariance functions

Ru(o): Ru(l)s seey Ru(n’l)a Ru(n); Ruz(o)y Ruz(l)y ) Ru.::(n" 1); Ruz(n)
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are replaced in respective matrices by their robust analogues, i.e.,
.r(ui)y r(uk'uk-l)s seey r(“k“k—n-’-l), f(ukﬂk-n), r(ukzk)v T(Uku’ck-1), cey

r(UeZk-nt1), M(UEZin).
Then, in equation (12)

rud) rlurwa) ... H(uktiens) )
r(‘ﬂi): ven r(‘uk‘ﬁy_n,{..z.) i

b= | S
i = r(;‘z) E

; B
o =r(uez) i er(@amkan) e or(Srtesden) |
Po=r(uZie1) o =r(ueTE) e TT EEYen43),

b2 = ¢ =\

—r(UkZiwns1)  —F{(UkZkens2) oo =TTE)

LU T
ERE

: i SRS
‘and in equation (16) e s
.r-—*r(u},u}’q) ‘ :
1o -
| C U= ) | 4
‘ : : Y IR
r(zrvion) |

. } o e eae sl F _
On the other hand in equation (24) the matrix ¥ will be of the
form™ .

(—r(:c;,uk-.,.,,;,,.,.l) e ‘r(bk“"’k'-’l-z.h‘) Re{=pi+n-1)

" —r(zrur{z) ... —r(Truipi4n Rb(’i“-f-?ﬁ v
¥=| -—r(zeursr) ... =r(Zrvrn) Ry (+1)
‘-T(ZkUk)' iee -r('tkuk-1+n) R‘-;(O)
-\ —r(TeUkaps+1) oo —T(ZTEUEZpy4n) R:(p2-1)
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o R(po Vo

‘-_,!p-:?‘ R.:( l—n)
{ Rz("n)
R:(1—n)

!
*

' R¢(pz:*- n) J

?

and the veétor R of the form

R = (r(Zeispy=n) - - - (Zrups1)r(Zrus) - . . r(zkuk_p,))r.

“In this case va.nous robust estimates of the corresponding co-
Yanance functions can be used (Gnanadeslkan and Kettenring,
1972). ;
* There are three approaches to ¢ ca,lculatxon accordlng to Chen
et al., (1989). The first approach is based on solving the normal
equation by Gaussian elimination or by forming the Cholesky de-
composition of ¢T¢ in (11) or ¥7V¥ in (25), the second one rests
on an orthogonal éecomposntlon of ¢ or ¥ and the third one -
on a singular value d¢compos1tlon of the same matrices. Each of )
these approaches hias some advantages and disadvantages (Chen et
al., 1989). It ought to be montxoned that we prefer the last two
approaches to the first one when tbe matrices ¢’ ¢ and YTV are
ill-conditioned.

IRV

4. Slmulatxon results. As an example we consider the discre-
'te-tlme o"b,;ect 6f the form ‘

- Lm0 = s 4+ G | . (29)

where ¢7 = (0.7,1) are real parameters, whose estxmate% will be
obtained using formula (11) wherea.s matrice (12) can be rewntten
in the form’ . ‘
AR TR - :
—Ru(0) R:(0) )’
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and vector (16) in the form

_ . (~RuD)
su=s (30
Then .-
@ = g [ B0 Eunl)
~ T\ Ras(0) Ru(0) )

and the vector &7 = (&, 3;) is of the shape
81) _ -1 ( —Re(0)Ru(1) + Rus(0)Reu(1) .
(&)= (R woms), @

where

0= Ro(0)Ru(0) — R2,(0).

In order to calculate the robust estimates of a; and b, it is nec-
essary to substitute the robust analogues in matrice (30) instead of
the respective values.of covariance and cross-covariance: functions.
Then we obtain

&1\ _ - | =Rz (0)r(urue- );)-r(uk:c r(zpue-1)
‘ <b;> =¢ (‘"‘("“f’k‘)r:uku:-l)-‘l— T(uz:)"(zku'kn) ) T (31)

‘where

gr = Rz (0)r(u?) — r(ugzs).
As robust analogues of the respective values of covariance and
cross-covariance functions we choose here

o A o (Gktip-1)ea for odd s,
r(upug-1) = med (#;g-1) = { $l@etier)g-y
+(ﬁk&k_1)%+1] ' fqi even s,
(ﬁkék}# k for odd 8,

r(upzi) = med (ﬁkik) = { %[(ﬁkfk)g—l
+(fig£L)s41) for even s,
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r(zrtr—1) = med(Zptp-1) =

L(zi)g-1

{ (2pmr)epr for odd s,
+(21ie)g41] for even s,

(ﬁi)%_x for odd s,
r(u}) = med (#f) = { 1[(#})s-1
+(#2)g41] for even s,

where

' Gip = ug — med (ug),

ﬁ=%—ﬁL_J

| (ul,). Lo, for odd s,
med(uk)‘:{ [(“k)g—1 -

+(ub);+1] for even s.

Realizations of independent Ga.ussxan 'variables {; with zero
mean and unitary dispersion and the sequence of the second order .
AR model of the form

Zk =—" zp-1 ~0. 5ék~2+Ch: k=T, 100;’ . (32)

were used as the ;llmput sequence. A realization of the discrete AR’
proceés was genetated as the additive noise according to equation
(10), where A(z™?) = 0.7z71; & is a sequence of independent iden-
tically distributed variables of shape (5) with the ¢ - contaminated
distribution (6) and ¢? = 1, 62 = 100. Ten experiments with dif-
ferent realizations of noise ¢ were carried out at the noise level
A = of /ol = 0.1. In each i-th experiment the estimates of pa-
rameters a; = 0.7 and b; = 1 of equation (29) were obtained using
formulas (30), (31) and s = 100.

Table 1 illustrates the estimates b and & calculated for A = 0
and averaged by 10 experiment values b, @ of the abovementioned
parameters and their confidence intervals obtained by the formulas

¢

Ay = it@%,
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s A= tta\/-, ) (33)
for € = 0.25. o
Here ; and 6. are the estimates of the variances oy and o,
respectnvely, a = 0.05 is the significance level; t, = 2.26 is the 100(1— -
a)% point of Student’s t distribution with v = L — 1 degrees of
freedom; L = 10 is the number of experiments.
-In this connection in Table 1 the first line for each A corre--
sponds to the estimates, obtained by using formula (30) and the
second one - to the estimates, obtained by applying formula (31).

Table 1. Estimates , & and averaged values b, @ and theu' con- . .
fidence intervals (33) for different A

A band b+ Ay a and_& A,
1. ze=G . .
0 0.98 0.69
0.38 0.50
0.1 . 0.97%+0.01 0.70+0.01"
: 0.36 £0.01 0.48 +0.03
2. 1z, is the sequence of the form (32)
0 - 0.99 o 0.71 .
0.55 : 0.94
0.1 _ 0.98 £ 0.02 0.71+0.01
0.52+0.03 ' 0.79+0.04

It follows from the simulation results, presented in Table 1,
‘that for different inputs and A = 0 the accuracy of the estimates
calculated by formula (30) will be higher. On the other hand, the -
accuracy of the averaged estimates calculated by formula (31) for
A = 0.1 will be not higher than that of the same estimates, obtamed
by formula (30). :

Further we changed the observa,mon ugp in the following way )

U509 = Uso + 100|"50| : o (39)

and used it with the 6ther observations in 'formulas (30) and (31)
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In Table 2 the averaged by 10 experiments the estimates b
and a and their confidence intervals, obtained by the formulas (33)
and calculated for different inputs are given. The first line for
different z; corresponds to the estimates, obtained by using formula
(30) and the second one — to the estimates, obtained by applying
formula (31). :

Table 2. Ave;éa;ged values b, @ and their confidence intervals (33)
for A = 0.1 and ul; of the form (34)

b+A, S A,

1. z=G
-2.769 £ 0.163 0.011 = 0.001
- 0.326+0.011 0533 0.024
2. z; is the sequence of the form (32)
~1.658 £ 0.277 - 0.024+0.024
0.505 + 0.025 0.775 £ 0.037

",
From the simulation results, presented in Table 2, it follows,

that the accuracy of the averaged estimates calculated by formula.
(31) will be higher than that of the same estimates, obtained by
formula (30). That is why we prefer the approach, based on robust
parameter estimation, to the classical'one, when the noise, acting
on the output of the dynamical system (4) has very large outliers.
On the other hand for first order object (29) the ordinary classical -
LS parameter estimation algorithm shown its efficiency even in a
case of ¢ — contaminated observations, when X = 0.1.

5. Conclusions. The results of numerical simulation carried
out by computer, prove the efficiency of the robust approach, based
on a substitution of the corresponding values of sample covariance
and cross-covariance functions by their robust analogues in respec-
tive matrices and on a further application of the ordinary clas-
sical LS parameter estimation algorithm. The above mentioned
approach can be used in place of the iterative M-procedures.
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