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Abstract. In the previous papers (Pupeikis, 1990; 1991; 1992) the prob­
lems of model oder determination and recursive estimation of dynamic systems 
parameters in the presence of outliers in observations have been considered. The 
aim of the given paper is the development, in such a. case, of classical off-line al-

, gorithms for systems of unknown parameters estimation using batch processing 
of the stored data. An a.pproach, based on a substitution of the corresponding . 
values of the sample covariance and cross-covariance functions by t,heirrobu~t 
analogues in respective ma.tnces and on a further application of t.heleast square 
(L8) parameter estimation algorithm, is wurked out. The results of numerical 
simulation by IBM PC/AT (Table 1, 2) are given. 

Key words: LS algorith.m, covariance analysis, outlie~.' robustness. 

1. Statement of the problem. By id~nti:fication and pa­
rameter estimation of real objects it' is often assumed that an ad­
ditive noise affecting tL· output of adynamic- sys,tem js Gaqssian, 
However ~n many cases this assumption ,is not valid. because of 
outliers in the sample data set, used for system parameter estima­
tion. That's why robust off-line algorithms, based on ~hecalcula­
tion of M-estimates by processing the whole data set, are worked 
out (Novovic~va, 1987). It is known, that these algorithms are 
iterative, step wise procedures requiering an inversion of the· cor­
responding matrices at eachcaiculation step and some respective 
initial conditions. On the other hand in this case a robust covari­
ance analysis and a ordinary classical LS algorithm can be used. 
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Consider a single input Zk and single output Yk linear discrete­
t.ime system described by the difference equation 

then 

or 

. Ilk. ~ "'~111k,-h:-'" - GriYk-n +blZk-i + ... + bnZk-n.. (1) 

Suppose.that ;'1: is observed with an additive noise et. i.e., 

"I: = - 01"k-1 - •.. - Ontlk_n + b1~k-1 + .... 
+ bnzl:-n + e: + 01';:_1 + ... One:_n 

(2) 

(3) 

(4) 

by introducing the backward shIft operator z-1 defined by .z-l ~k = 
ZI:_1, where . 

(5) 
J 

is a sequence of ihdependent identically distributed variables with 
an! - contaminated distribution of the form 

(6) 

p(el:) is a p,fobability density distribution of the sequence ek; 1.1: 

is a .. random vari~ble, taking values 0 or 1 with the probabilities 
p('n = 1) = e, p(1k = 0) = 1- e; V.I:. 'f/k are sequences of independent 
Gaussian variables. ~ith z~ro means and variances O'~. O'~ respec­
tively, 

n 

B(z-1) = Lbiz-i, 
i=1 

n 

A(z-1) == Lo;z-i 
i=l 

(7) 

(8) 
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"! is the order of difference equation (1), respectively; 

(9) 

W(z-1 j h) is a noise filter transfer function; h isa parameter vector. 
It is assumed that the roots of A(z-1) are outside the unit circle 

ofthe Z-1 plane. The true orders of the polynomials A(z-1). B(z-1) 
are known. The input signal Zk is persistent excitation of anarbi­
trary order according to Astrom and Eykhoff (1971). 

Here we deal·with the estimation of ~nknown pll.rameters er = 
(aT,bT) of difference equations (3) or (4) by means of~heco~ri­
ance analysis and an ordinary. least squ~es (LS) .algorithm in the 
presence of outliers in observations. 

2: Parameter estimation in theabs.e~ceofoutliers in 
observations. Suppose that, = 0 in equation (6), thereforep(ek) = 
_"':(0, (71). In .this case, as it is-shown in Astrom and Eykhoff (1971); 
Kazlauskas and Pupeikis (1991) to estimate the vector of unknown 
parameters eT = (aT, bT ) multivariate approaches ate. worked out. 
On the other hand, ii is known that in the case when 

(10) 

the ordinary classical LS parameter estimation algorithm is used. 
Then the vector eT = (aT, bT) of the estimates . 

of the respective parameters (7) is calculated using the classica~ LS 
of the form. 

(11) 

where 

(12) 
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tPll = 
(

Ru(O) Ru(I) 
~(O) 

R~(I) 
~(O) 

a;re n x ~- sym:metric submatrices; 

RU(n-l») 
Ru(n - 2) . , 

~(O) 

Rz(n - 1») 
R~(n - 2) . 

.. 
~(O) 

(13) 

(14) 

.. 
_Rzu(.n - 1») 
-~u(n - 2) 

• r (15) 

are n X" n su bmatrices. 

is a 2n vector; 

-Ru(n) 
~u(l) 

. . 
-Ruz(O) . 

(16) 

1 .-i 

Rz(i) = -. L:(Zk - Z)(Zk_i - i), i = 0, m (17) 
s - t k=l . 

are values of the covariance function of input z~; 

1 .-; -
~(i) = -. L:(Uk - U)(Uk_i - u), .. i = O,m (IS) 

S - t k=l . .' 

are values of the covariance function of output U1:; 
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1 3-'. . 
Ru:;{i) = -. ~(UI: -U)(Xk_i -.X), 

s-tL..J 
1:=1 

57,1 

. I·-i. . 
Rzu(i)=-."(x.-~)(Uk;;'i-U), i=O,m (19) 

S-tL..J 
'. .1:=1 .'. ..,; . 

are valoes of cross-covariancefunctions which are calculated using 
the sequences Xk and UI: of sample size 8; 

, , 
i = 8- 1 LXI:,' U = s-1 LUk. 

1:=1 1:=1 

Now let us consider such a case, when the assumption (10)' is 
invalid. Then the classical LS of the form (11), used to estimate a 
vector eT = (aT, bT ) of the unkno~n paramet& of a mathematical 
model of the dynamic object (1) - (9), is of little use. 

Let us assume that 

where 

np 

1 
W(z-l. h) = 1 + P(z- ), 
., 1 + R( z- 1) . 

nr 

P( -1) " -i Z = L..JP;Z , R( -1) " -i Z = L...t ri z , 
.=1 .=1 

.... (20) 

np and nr are orders known beforehand of an autoregressive moving 
. average model (20). 

In thi~ case the LS algorithm based on the covariance analy­
sis dispiays remarkable properties (Isermann, 1974), therefore this 
algorithm can be applied here. Now, if we multiply both sides of 
difference equation (3) by XI:-1', then we receive an equation of the 
form . 

Rzu(r) = - a1Rzu(r - 1) - a2R",u(r - 2)..,.. .. , 

- anRzu( r - n) + b1Rz:( r ,...-1) + . ,; + bnRz:(r :- n) (21) 

+ Rze(r) + a1Rze(r - 1) +, .. + anRiee(r - n), 
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where R.(O is the cross-covariance function of Zk, ek. 
In (21) we choose T from the interval 

-Pl < T ~P2, 

where PI and 1'2 ate determined SO; that when T < -PI the function 
Rz( T) ~ const, and when r > P2 - R.u( r) ~ const. 

Then one can rewrite equation (21) rewrite in such a form 

R= lJc+WJ, (22) . 

where 

R = (Rzu( -PI + n) ... R.u( -1)~u(O) ... Rz:u(P2») T (23) 

isa (PI +1'2 - n + 1 ) vector; 

-R,,(-Pl + n -1) -R.u(-pd Rz( - PI + n - 1) 

'\)= -Rzu(-l) -Rz:u(-n) Rz(-l) 
-~u(l) -Rz:u(l - n) Rz(O) 

I . , . 
: I 

-Rz:u( -P2 - 1) - Rz:u(P2 - n) Rz(P2 - 1) 

R:c(Pl) 

is a (PI + 1'2 - n + 1) x 2n covariance matrix; 

WJ = (Rz( -PI + n) ... Rz:( -1)~(O) . ',' R:c(1'2»)T 

is a (PI + 1'2 - n + 1) vector. 

(24) 

It should be mentioned that we determine the values Rz:u( -j) in 
the matrix (24) using formula (19) and the nonsymmetryc pr~perty, 
Le.: 
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r . -
lOr ) ;:: 0, m . . ,. . . " . ." . 

. . '. Thu,s, one can. o,btain the" p~rameter es~im~~es ~ec~o~ ~~ r.~~~ 
fqrm . ' . , .,. \ . '., "I 

• ..) •• ,i 

; i, ... " , r. :" 
" .,. (25) 

<. I "";.,, .! 

" !, • • 1 .' " , '-:. .;. :' ~~ " .'~ , '. t' 

8. Parameter -e$timation in the pr.Rsence of outhers In 

observations. In equation (6) it was assumed that.! = O. Now let 
us consider the case when this assumption is invalid. It is known 
(Novovicova, 1987) that in such a case M-est~m~t~s -of UAknPW4 
parameters of linear dynamical systems (1) - (10) can be calculated 
using three procedures: 

1) the S-algorithm 

cU+~) =cUJ H [ t, "'(.P) N)"P),,;Ul ]-' 
o 

(26) 

x E,p(eP)/c1)IPP), 
:=1 . , .; 

f •. ' 

2) the H-algorithm 

. C(}+l) =eU! ~ ~ [t 'f~) IPTU)]-l 

t=1 . '. 
'0 

(27) ..... " 

. x E,p( e~) /c1)IP~j), 
t=1 

3) and the W.;.aJgorithm ' , . 

... ·4", 

}U+1) =eU) +c1[tW~)IP~)lPr(j);l-1 
:=1 . 

o , , . (2~) 
to' 

x 2:,p( ep) / (f)IP~j) . 
f=1 

Here 
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. , . 
are the estimates of parameters (l), whic~ ~re~aJ,<&ulate9 a~ the j-th 
iteration using the a,bovementioned algorithms; a is a scale value 
of the rc;>bust estimate; "'(e~) la) is a ",-vector which can be cho­
sen acco.rding to Stockinger and Du~ter.(1987), Novovicova (1987); 
wh~reas t/;{v)/v is non-increasing for v > 0 and lim" .... o ",(v)lv = p~ < 
'00; t/J'( ep~ la) is the first order PlLrtiald~riVll.ti.ve of th~·101( ep) I a) 

u.U> - ( u' .,.,', U '" .. )T(j) r,t - - t-h .! •• ,'" t-n .... t-b···, .... t-n ' 
~ ':i. ,.,' " H " , 

is th.e .Y~t9r of n Q~servations of input :t,t and output. Uk; 
" {i.' ", 

eCi) - U ,,,T(j)c'U) t -. t ~ l"t 

is a generalized equation error at the j-th iteration; 

.w(j) ~ {a:~e~) la)fr-¥) ~ for ep) :f: 0 . 
. _ t p~ for et = 0 

The M-estima:tes, obtained by mean~-ofthe S-, H- and W­
algorithms, are sc}lutions of the respectiv~ nonlinear equations re­
quiring an inversion of the corresponding matrices at each step' 

I 

and some initial conditions. Moreover, the problem of stopping 
calculations of the .M-estimates. will arise here too. That is why 
we shall try to use in this ca:se the robust covariance analysis and 
an ordiuary LS. algorithm for parameter estimation. It is known 
(Gnanadesikan and Kettcmring, 1972; Hampel et al., 1989; Hu­
ber, . .l984) that equations (17) - (19) give then strongly biased es­
timates of sample covariance functions a~a~therefore th~'estimates 
eT = (aT, bT) of the parameters er == (aT, bT), obtained using the LS 
algorithm, will He biased too.- In oraerto increase its efficiency it 
is necessary to replace the resp~ctive averagi~~ linear operators in 
matrices (13), (15), (24)~nd vectors (16), (23) by their non linear 
robust analogues according toPupeikis (1990). For this purpo~e 
the values of the sample covariance and cross-covariance functions 
Ru(O), Ru(1), ... ,Ru( n .... l), Ru(n), Ru~(O), Ruz( 1), ... , Ru~(n-l), Ruz( n) 



are replaced in respedive mattices by their robust analogues, i.e., 
. r(ui), 1'(uiUt_1), ... , ,.(u.u._ .. +1), 1"(U.Ui-n), "(UiZ.), 1'(u.z._1), ... , 
r(ui~._ .. +t>, 1'( U.Zi_n). 

Then,. in equatic:m (1.2) 

. (:.r(.Ufl 
fbu =. ., 

and'in equation (16)' 
'.{ 

.," , 

;' . . 

. , . . 

r(UtUi_n+l»), 
r(ttidi_n+2) i; 

"r'(~i') .• r,'d \ :'.,~ '" 

,.' .~ 

;. 

" 

.- .: , r~.l" ,,~/ 

,. ' 
. i i.' 

'!' ' t 

':; :. 

On the other 'hand in equation (24) themat·rix· .. ·;wUl be'of the 
form' ' 

~ 
, 

-r(z.u.+'l~ .. +l) -"(%iUI;'+'1 ) R~(--p{+ n - 1) 
.. , . ' I' : • .;. : I . 

-r(ZkUk+7) -r(ziul+l+n. ~;(~~,~.' 
ti= -1'(zku'+1) -r(zkul+ .. .) RJ(.:i:1) 

-1'(z.ut) -r(z.Uk_1+n) R~(O) . 
-1'(zku'+'2+1) ~1'(zk U.:';;'2+n ) ~(P2 -1) 
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, ; 
" "I 

. \ ., , 
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, , ,. , 

i ',' •. 

and the ve~tor R ()f,the form 

.' 

\ 

RA-l-'~) , 
Rz(-n) 

R:r(l - n) 

, R:r(P2'- n) 

R = (r(ZktIHpl-n) ... r(zkuHdr(ztut) ... r(zkUt_P2))T. 

:In this case various robuSt estimates of the cor1responding co­
+ariante,'t~nctions can be ;tis~d (GnanadeSikan aid Kettenri'ng, 
i972). ' I 

There are three approaehes toe calculation' according to Chen 
et 41., (1989). The first approach is based on solving the normal 
equation by Gaussian elimination or by forming the Cholesky de­
composition of cjJT cjJ in (11) or ~T~ in (25), the second one rests 

; 

on an orthogonal ~ecomposition of cjJ or ~ and the third one -
'I . 

on a singular valu; d~composition 9f the same matrices. Each of 
these approaches h;as some advantages and disadvantages (Chen et 
al., 1989). It ought tp be me:ntion~d that' we prefer the last two 
approaches to the 'first one when tpe matrices cjJT tP and ~T~ are 
ill-conditioned..,' 

4. Simulation results. As an example we consider the discre-
te-tihle object Of'the f6rm ' ' " '" ," ' , . , 

(29) 
! 

where er = (0.7,1) are real parameters, whose' estimat~ will be 
obtained usi,ng formula (11); whereas matrice (12) can be rewritten 
in the form" ' ' . 

),.' 

cjJT tP = (, Ru(O) -Ruz(O)) 
" -&z(O) R:r(O) , 
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'al\dvector (16) in the form 

Then 

8(4)T 4»-1 _ q-:-l.( Rz(O) 'Ruz(O») 
,... Ruz(O) Ru(O) , 

and the vector eT ~ (ab b1) 'is of the shape ,', 

(30) .' 

where 

q= Rz(O)Ru(O) - ~z(O). 

In order to calculate the robust estimates of al and b1 it is nec­
essary to substitute the robust analogues in matrice (30) instead of 
the respective values, of covariance and cross-covatiance"functidns. 
Then we obtain ' 

(31) 

where 

q,. = Rz(O)r(un - r(~l:Zl:). 

As robust analogues of the respective values of covariance and 
cross-covariance functions we choose here 

for odd 8, 

for even 8, 

for odd s, 

for even s, 
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where 

Off-line e&timation 

Uk == u~ ..;. med (Uk), 

Zk = Zk - Zk, 

for odd s, 

for odd s, 

for even s. 

Realizations of independent Gaussianvariables (1.: with zero 
mean and unitary dispersion and the sequence of the second order . 

. AR model of the form .-

I 

:1:4; =f :1:4;-1 - 0.5Zk_Z + (k, k = 1,100, . (32) 

were us~d as the Anput sequehce. A realization of the discrete AR' 
process was genetated as the additive noise according to equation 
(lO), where A(z-~) := 0.7z-1 ; {k is a sequence of independent iden­
tically distributed variables of shape (5) with the t: - contaminated 
distribution (6) and a-~ ::: 1, a-~ = 100. Ten experiments with dif­
ferent realizations of noise e; were carried out at the noise level 
~ = cf. /a-; = 0.1. In each i-th experiment the estimates of pa­
rameters a1 = 0.7 and 61 :: 1 of equation (29) were obtained using 
formulas (30), (31) and s = 100. 

Table 1 illustrates the estimates b and a calculated for ~ = 0 
and averaged by 10 experiment values b, a of the abovementioned 
parameters and their confidence intervals.obtained by the formulas 
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for £ = 0.25. .. ". , 
.~." .". . . . 

: Here iT6 and iT. are the estimates of the va,pances . .o't and tt';; 
respectively, a = 0.05 is the significance level;ta = 2:26js the 100(1:-" ( . 
0)% point of ~tudEmt's t distribution with v = L - 1 degreeS of .' 
freedom; L = 10 is the number of experiments . 

. In this connection in Table 1 the first line for .each ~. corre-: 
sponds to the. estimates, obtained by using formula. (30) and the 
second one - to the "estimates, obtained by applying formula (31). 

Table 1. Estimates h, a and averaged valuesb, a and their con- " 
fidtmee intervals (33) for different~ 

~ band b± ~1 it an~a :J;:.~2 

1. Zk == Ck 
0 0.98 0.69 

0;38 0.50 
0.1 0.97±0.01 0.70±0.01' 

0.36±0.01 0.48± 0.03 
2. z" is the sequence oftheJorm (32) 

0 0.99 0.71 
0.55 0.94 

0.1 0.98±0.02 0.71 ± 0.01 
0.52±0.03 0.79 ± 0.04 

. 
It follows from the simulation results, presented in Table 1, 

'that for' different inputs and ~ = 0 the accuracy of the estimates 
calculated by formula (30) will be higher. ()il,the other hand, the 
accuracy of the averaged estimates calculated by formula (31) for 
~ = 0.1 will be not higher than that of the same estimates, -obtained 
by formula. (30). 

Further we ehanged the observation Uso in the following way 

uso =Uso + ~OOlusol (34) 

and us~d it with the other observations in formulas (30) and (31). 
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In Table 2 the averaged by 10 experiments the estimates b 
and a and their confidence intervals, obtained by the formulas (33) 
and calculated for differel1:t inputs are given. The first line for 
different:l:l: corresponds to the estimates, obtained by using formula 
(30) and the second one '- to the estimates, obtained by applying 

.formula (31). 

Table 2. Averaged values b, a and their confidence intervals (33) 
for ~ = 0.1 and uso of the form (34) 

b±~l a±~2 

1. :1:1: == (I: 
-2.769±O.163 0.011 ± 0.001 

0.326 ± 0.011 0.533 ± 0.024 
2. :1:1: is the sequence of the form (32) 

-1.658 ± 0.277 0.024 ± 0.024 
0.505 ± 0.025 0.775 ± 0.037 

, . 
From the sin/ulation J:'esults, presented in Table 2, it follows, 

that the accurac~ of the averaged estimates calculated by formula. 
(31) will be higher than that of the same estimates, obtained by 
formula (30). Th"t is why we prefer the approach, based on robust 

. parameter estimation, to the classical'one, when the noise, acting 
on the output of the dynamical system (4) has very large outliers. 
On the other hand for first·order object (29) the ordinary classical 
LS parameter estimation algorithm shown its efficiency even in a 
case"of e - contaminated observations, when A = 0.1. 

5. Conclusions. The results of numerical simulation carried 
out by computer, prove the efficiency of the robust approaeh, based 
on a substitution of the corresponding values of sample covariance 
and cross-covariance functions by their robust analogues in respec­
tive matrices and on a further application 'of the ordinary clas­
sical LS pa.rameter estimation algorithm. The above mentioned 
approach can be used in place of the iterative M-procedures. 
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